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Ethereum smart contracts leverage blockchain technology to facilitate the transfer
of values directly between participants on a network, eliminating the need for a
central authority. These contracts are deployed on decentralized applications that
operate on top of the blockchain. By doing so, they provide individuals with the
ability to create agreements in a transparent and secure environment, minimiz-
ing conflicts and promoting trust. It has been observed that there are bugs in the
smart contract’s codes as these are provided by various programmers across the
globe. The attackers exploit these security loopholes and pose a significant threat
to applications, which subsequently result in financial losses to users. Discovering
vulnerability in each contract is an important but time-consuming task. Therefore,
we require to provide a security layer to each smart-contract such that it will make
the exploitation a bit difficult task for attackers. The use of encryption and obfus-
cation techniques improves the security layer. The main focus of this research is
source code obfuscation, which can increase security by up to 75%. The code obfus-
cation in security is mainly used by attackers to hide their malicious intent. We, in
this approach suggest this method for increasing the complexity of smart contracts
so that these cannot be exploited easily. We evaluate the impact of adding security
layer to smart contract. The evaluation was done with various static and dynamic
tools that identify the vulnerability in smart contracts. We achieved promising re-
sults which show that Obfuscation technique enhances the security and complexity
of codes up to 75% which are stored on public blockchain.
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1 Introduction

Blockchain is the technology, covered by Satoshi Nakamoto in 2008 [28]. Blockchain
technology is a distributed database which supports Smart contracts [4, 14, 31]
which is replacement of third parties in blockchain technology. Smart Contract
contains all necessary condition of the involved parties for specific tasks are men-
tioned and all the necessary conditions are design by the programmer using spe-
cific programming languages like solidity [2], Vyper, Rust [6] etc. Smart Contract
conditions are designed with the help of lawyers which will justify all legal terms
and make easy for programmer so that these terms are designed and fitted in con-
tract without any misunderstanding [26, 35, 37, 42]. Blockchain will check each
condition and the current state of the smart contract before run the contract.
Smart contracts are adopted due to its immutable property which means, it can’t
be updated by any involved parties and minimizes the third-party load which
reduces the risks of information leaking from the third-party side. Smart con-
tracts are irreversible if there are any changes in smart contract it will be again
designed and deployed on Blockchain. Smart contract security is of utmost im-
portance since they have the ability to store billions of dollars; a single error
might result in the loss of the entire amount.

There are few crucial rules that must be followed when designing smart con-
tracts. For instance, there must be no logical or syntactical errors of any kind
in smart contracts. Designing of smart contracts includes following coding lan-
guages like Solidity, Go, Rust, Haskell etc [29]. But which language is better and
safe for smart contracts is another ongoing research challenge. The Ethereum
platform is most popular where solidity-based smart contracts are employed.

Bytecode [3,13] is the intermediate code which is understood by the Ethereum
Virtual Machine(EVM). Bytecodes are long value hexadecimal representations of
the final contract. Based on one byte, the bytecodes can be translated into EVM
instructions or operation codes (opcodes). An attacker might easily misunder-
stand how a smart contract works, construct a malicious smart contract, and call
the victim’s smart contract to take advantage of its capabilities and utilize them
maliciously because plain text source code is available.

Therefore, obfuscation is employed to preserve the security of source code;
nevertheless, obfuscation increases code complexity, which affects code detec-
tion accuracy utilizing tools [23, 40]. And complexity of the code degrade the
accuracy of the code. In this paper, we will focus on obfuscation techniques and
apply them on source code and extract opcodes. After that we analysis the secu-
rity and complexity of the code using existing tools.
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The remainder of this article is structured as follows. We discussed about tax-
onomy comparison of vulnerability detection tools taxonomy comparison of vul-
nerability detection tools in Section 3 and We introduce the proposed works in
Section 4. Section 5 contains a map of the dataset’s details and Section 6 has the
evaluation of work is discussed. The paper’s results are assessed in section 7. Fi-
nally, in Section 8, we draw a conclusion and talk about potential future research.

Our goal is to enhances the security of smart contracts, and we suggest an ob-
fuscation strategy for them. Our scheme is characterized by the following points

1. Analysis the obfuscation techniques for solidity code.

2. Apply obfuscation techniques on solidity codes and analysis the perfor-
mance of the codes using available tools.

3. Generate CFG (Control Flow Graph) of obfuscated and non-obfuscated
codes and analysis complexity factor in CFG edges and blocks.

2 Literature Review

2.1 Smart Contracts History

In past bitcoin [17,28] is only used as medium of exchange between peer to peer
nodes. Yet there are a lot more options offered like blockchain technology. As we
know that blockchain supports smart contract’s and smart contract’s enhances
security, anonymity and data integrity capabilities all operate independently of
outside third parties. These capabilities will fundamentally alter many applica-
tions. Blockchain technology is used in numerous applications, including IoT,
Smart Grid, Supply Chain Management, Healthcare, Smart Property, and Digital
Content Distribution among others. Bitcoin also develops smart contracts, but
they are inferior to Ethereum’s. Scripts, the name given to Bitcoin’s smart con-
tracts, have a wide range of limitations and are not ideal for many use cases [39].

Now we will discuss about Ethereum which is used as a platform for smart
contracts.

2.2 Ethereum Smart Contracts

Ethereum [22] is the open platform for smart contracts and smart contracts are
immutable so if there is any change in smart contract it can’t be edited. Along
with this smart contracts are free from third parties there is no requirement of
any mediator for smart contract. Since smart contracts can be easily combined
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and reused, their openness makes them remain very appealing for many use
cases. Decentralized finance (DeFi) [25], where contract-based systems are con-
fronting financial institutions like banks and exchanges is the most notable use
of this creation of interconnected smart contract systems. EVM (Etherum Virtual
Machine) [20] must offer an abstraction between running code and running ma-
chine because the code and transactions are executed on miner nodes. To do this,
EVM employs a series of opcode instructions. When a smart contract is launched,
it’s code must be converted into the EVM bytecode that represents these instruc-
tions like MSTORE is 0x52, SSTORE is 0x55, PUSH1 is 0x60. Solidity and Vyper
are the two primary programming languages employed at the time of writing
for Ethereum smart contracts. Solidity [7], an object-oriented, statically typed,
curly-bracket language that allows inheritance, libraries, and user-defined types,
is the more durable of the two. In contrast, Vyper [32] is a tightly typed, python-
like language with less features than Solidity. Its objective is to use simplicity
to make contracts more secure and auditable. But during programming smart
contracts due to some logical error, syntactical errors and functions limitations
vulnerabilities may occur in smart contracts.

2.3 Vulnerabilities in Smart Contracts

Vulnerabilities are loopholes which attract attackers and which cause million of
dollar loss [22]. Due to denial of service with failed calls vulnerability in 2016,
110 ether loss, re-entrancy vulnerability causes the reason of loss of 60 million
us dollars, and in February 2022, 320 dollar drained. We found that vulnerabil-
ities are the big loopholes in smart contracts and due to immutability features
of smart contract we can’t modified them. If we must fix the bug, then a new
smart contract should be designed. Additionally, as the deployer details of smart
contracts are anonymous, we are unable to notify the smart contract owner if
a bug is discovered. Smart contracts are deployed on ethereum in the form of
source code and bytecode attacker can easily track the functions and working of
smart contracts. If they found any function weakness, then attacker can easily
drain the ethers from smart contract without the knowledge of smart contract
owner. In order to solve these issues and rescue smart contracts from these losses,
a number of automated tools that analyze vulnerabilities. Some of the tools are
based on source code, while others are based on bytecode and opcodes, and few
tools support both. Around 150+ smart contract vulnerabilities detection tools are
available. But there are some limitations still faced by smart contract tools like
they didn’t support all version of smart contracts and tools are based on specific
vulnerabilities no tools detect all vulnerabilities. So we are not sure about the
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security of smart contract source code. After go through all the papers we found
that obfuscation add-On a security layer. Obfuscation of code malicious actors
didn’t see the functions and logic of the code. Furthermore, it is very difficult for
malevolent attackers to create a different contract that disrupts the original con-
tract utilizing contract calls without being able to view the code and functions.
For obfuscation we have used the BiAn tool.

BiAn [1] is a source-code level obfuscation tool built for Solidity smart con-
tracts and it is responsible for generating the masked samples. That is the only
method we are aware of for hiding the nature of an Ethereum smart contract at
the time of this research. There are three types of contract obfuscation [15] that
BiAn is capable of producing: Layout Obfuscation (LAO), Data Flow Obfusca-
tion (DFO), and Control Flow Obfuscation (CFO for short). LAO simply modifies
the lexical analysis, such as changing variable names and removing comments
and not the logical structure of the source code. Such as DFO and CFO modify
the flow of data and control respectively. Maintainers of BiAn have admitted
that the CFO module is broken at the time of our research. If the source code
for the obfuscated contract can be compiled into a valid contract, then we may
safely believe that the obfuscation was successful. As a result, we only find LAO,
DFO, and LDO (coupled with LAO and DFO) to produce evasive contracts. We
have used this tool for obfuscation and generated some more obfuscation smart
contracts with other techniques like dead code insertion, opaque code insertion,
array transformation etc.

2.4 Obfuscation

A key method for shielding software intellectual property is program obfusca-
tion [5,38]. It modifies computer programs into new iterations that are less intu-
itive but semantically equal to the original. The idea was first presented during
the 1984 International Obfuscated C Code Contest, which gave prizes for innova-
tive C source codes with “smelly aesthetics”. It has now evolved into a technology
that is essential for software security. Since obfuscation has been researched for
about 30 years, there are numerous surveys accessible.

Obfuscation however,is undoubtedly a viable option for enhancing privacy
and add a security layer. Our findings provide verifiable evidence that obfusca-
tion has practical uses for the entire public blockchain ecosystem, and we ad-
vocate for increased security and safety while creating blockchain applications.
Obfuscation variations are like secure and usable obfuscation, code-oriented ob-
fuscation explained in next section.
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2.4.1 Secure and Usable Obfuscation

An obfuscation technique must be highly resistant and efficient in order to guar-
antee safety. Obfuscation needs to safeguard the semantic privacy of the program
in order to be effective. To be more precise, a secure obfuscation technique should
mask the fundamental meaning of a program.

Resistance refers to how challenging it is to decipher the concealed meaning.
Attacks shouldn’t be able to break a secure obfuscation method. When discussing
code-based obfuscation, obfuscation capability is associated with power, whereas
resistance encompasses both robustness and stealth.

2.4.2 Code-Oriented Obfuscation

A work on code obfuscation was first published in 1993 by [10]. A seminal study
on the classification of obfuscation changes was published by [12] in the latter
half of 1997. Afterwards, a plethora of obfuscation strategies were put out in the
published works. we can classify code-oriented obfuscation techniques as pre-
ventive obfuscation, transformation obfuscation, or polymorphic obfuscation ac-
cording to their intended level of security. The purpose of preventive obfuscation
is to make it more difficult for attackers to access the original source code. It is
more difficult to understand the original codes once they have been transformed,
which reduces their security. As such, the goal of polymorphic obfuscation is to
make it difficult, if not impossible, for attackers to identify the semantics or fea-
tures they are looking for in each disguised version. We can further categorise
them by how they obscure information, such as layout transformation, control
transformation, or data transformation. These transformations increase the com-
plexity of the code as we have shown in definition 1.

Definition 1 When a program Q is ¢ times more complex than a program P—
that is, when the added complexity is c times the original one and is hence harder
to understand—it is said to be c-unintelligible with respect to P. Mathematically:

K(Q) >= (¢ + DK(P) (6.1)

and,
Definition 2 A C-Obfuscator

O=({P~+L»)Q (6.2)

is a mapping from programs with security parameters L to their obfuscated ver-
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sions such that for all

PeP, AeL.O(P, ) = P (6.3)

where (P,A is the input to O, and satisfies the following properties:

Secrecy : Security parameters are kept private and contain all the informa-
tion necessary to acquire P given O (P,4).

Functionality: The computation of the same function using O(P,A) and P
results in [[P]] = [[O(P,A)]].

Polynomial Slowdown: The size and running time of O(P,A) are at most
polynomially larger than the size and running time of P, i.e. for some poly-
nomial function p.

(P, D < p|(P),

and if P halts in k steps on an input i, then O(P, 1) halts within p(k) steps
oni.

Unintelligibility: O(P, 1) is c-unintelligible with respect to P.

2.5 Types of Obfuscations

1.

Preventive Obfuscation

Preventative obfuscation makes it harder for attackers to access code in
a readable manner. It was mainly designed to be used with non-scripting
languages, such as Java and C/C++. In order to impede the disassembly
phase, preventive obfuscation introduces mistakes to general dissemblers.
The goal is to inject incomplete instructions as trash codes after uncon-
ditional jumps, which linear sweep algorithms will see as a red flag. If a
dis-assembler is unable to process such incomplete instructions, the mech-
anism will be activated. Further, they swap out standard procedure calls
for branch functions and jump tables to foil recursive algorithms. Since
the return addresses are determined dynamically at runtime, static dis-
assemblers have less chance of discovering them. The same idea was of-
fered by [30], who want to change unconditional jumps into traps that
trigger signals.

. Layout Obfuscation

The layout of a program is jumbled up while the syntax remains unchanged
through layout obfuscation. It might, for instance, swap around the names
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of variables and classes or rearrange the execution sequence of instruc-
tions. Commonly used in layout obfuscation, lexical obfuscation replaces
meaningful identifiers with gibberish. Adopting consistent and clear nam-
ing standards (like the Hungarian Notation [33] is a best practise for most
programming languages. Due to the irreversibility of some alterations, lay-
out obfuscation offers excellent resistance. Unfortunately, the obfuscation
is only effective at the layout level. Methods used in layout obfuscations
are:

« Remove Comments:

Obfuscation at this level is the most basic type of documentation for
software and frequently includes developer comments. As far as I
can tell, comments and debugging information are routinely removed
from a program when it is compiled, despite the fact that doing so
apparently reduces the program’s readability.

+ Source-code Formatting:

Removing all white-space and indentations from the program source
code [16] changes the format of the code, making it less readable by a
reverse engineer. Obfuscation C competition [16] contains examples
of such formatting obfuscation.

. Control Obfuscation

When control flows are obfuscated, they become more difficult to follow.
In computer programming, a bogus control flow is one that was added on
purpose but will never be used. It will make a program more difficult to
understand and maintain, as measured by metrics like McCabe complex-
ity [24]and Harrison metrics [19]

The McCabe complexity of a linked component can be raised by adding
either new edges or new nodes or by doing both [12] proposed the concept
of opaque predicates to ensure the unreachability of fake control flows
shown in figure 1. They came up with the term “opaque predict” to describe
a predicate whose result is known at obfuscation time but is obscured by
static code analysis.

Example of control flow is shown in Figure 2.
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1 function p1 (uint z ){ 1 function p2 (uint v ){
2 if (2> 5) 2if(v>5)
3 if (z*z <20) 3if(v>1)
4777} 4VVV }
Pattern 1 Pattern 2
Dead code Opaque code

Figure 1: Dead code and Opaque code used for obfuscation

a) Aggregation:

Aggregation transformations include inlining (which replaces a method
call with the body of the method) outlining (which replaces a se-
quence of statements with a method call), interleaving (which com-
bines multiple methods into one), cloning (which generates multiple
copies of the same method), and loop transformation (which rewrites
aloop) [12] and [36].

b) Ordering:

The order in which the calculations are performed can be shuffled
around. Swap the placement of a term in an expression, a statement
inside a basic block, a method inside a class, or a class inside a file.
For example, loop reversal [36] and control flow flattening [12] allow
for the reordering of loops. By flattening the relevant control flow
graph. Control flow flattening eliminates the control flow structure
that functions have included the nested loops and conditional state-
ments. Figure 2 is an example of code obfuscation using control
flow flattening [27].

c) Computation:

It alters the source code algorithm by introducing dead code (as seen
in figure 1) or redundant operands. One of the most common forms of
computational obfuscation is the practice of parallelizing programs,
which conceals the underlying control flow by generating inactive
processes. It also separates a block of code that runs sequentially into
multiple pieces that can be executed concurrently.

4. Data Transformation:

Data transformation makes the program functionality more difficult to un-
derstand. Data transformation is broken down into three categories by [12]:
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mmodexp(int y, intx[], intw, inm
)

intR L: int modexp (inty, int x[] , int w, int n)
e {
HS0s intR Lk,s;
white (k<w) { int next = 0;
if (x[k] == 1) for G ;)
R= (s*y) % n; switch (next) {
3 ’ case 0: k=0; s=1; next =1; break;
R=s: case 1: if (k<w) next = 2; else next = 6; break ;
s= RJR % n case 2 : if (x[k] ==1) next else next =4; break;
=R case 3: R=(s*y)%n; next = 5; break;
k;+'1 case 4 : R=s; next = 5; break;
U caseb : s= R*"R%n; L=R; k++; next =1; break;
retum L: case 6: retum L;
Yo }
k=0 next =0
s=1 :: i
if(k<w)
return L if (x[k] ==1)
[
if(k<w) t=3 R=(s"y)%! R: L=R
::J next =2 e A pais K+ A
e else next=6 next =1
R=(sy) % n R=s next=6
s=R'R
L=R
k++
goto B1

4

Figure 2: Control flow obfuscation

storage and encoding, data aggregation, and data ordering. Drape [16] pro-
posed the abstract data-type for concealment and gave a taxonomy based
on the work of [12]. Methods for Data transformation

a)

66

Variable Encoding:

To encode a variable, an expression is substituted for it; for example,
if I is a variable, then it would be replaced by the expression I = di
+ e, where d and e are constants. Encoding variables so that their
correct values can be retrieved on demand is called “invertibility” and
it becomes especially important when one variable’s output is needed
to determine the value of another variable.

Merging and Splitting:

Two or more scalar variables can be combined into a single variable
for obfuscation purposes, provided that the combined range is con-
tained within the accuracy of the resulting obfuscated variable.

Array Transformations:

Reorganizing operations, such as modifying the array’s indexes, can
be used to conceal information contained within an array.
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2.5.1 Overview of Findings

After literature survey we will highlights the findings of this area in this sec-
tion. Till date we do not have secure and usable obfuscation techniques which
increases the security with less overhead. First, no previous studies of obfusca-
tion have focused on assessing the impact on the program’s residual semantics.
Evaluation metrics proposed by [12] are widely used; these metrics evaluate the
increasing obscurity of the code rather than the semantics of the unprotected
code. When it comes to obfuscation efficiency and other security-related param-
eters, none of them can measure up. Therefore, it appears that defining suitable
measurements is the first order of business for future research into secure ob-
fuscation techniques. It is possible that the stringent security requirements for
obfuscating circuits make it impossible to create even a theoretically viable ob-
fuscation solution. For this reason, graded encoding may be the sole kind of ob-
fuscation that may now fulfil a security need.

Most of the obfuscation techniques applicable for simple mathematics expres-
sions. It is difficult to handle non-mathematical syntax and other coding concepts
like data flow and control flow using obfuscation.

3 Vulnerabilities Detection Tools

Vulnerabilities are the loopholes which occur due to weakness of code and coders,
and they can resolve but some time vulnerabilities resolved after paying a large
amount of loss. In Ethereum which is a public blockchain and there are millions
of smart contracts deployed but due to some error attacker take the advantages
of that error and extract the balance of the smart contracts like in re-entrancy
attack this attack occur due to lack of ordering of instructions. Re-entrancy attack
occur due to irregular patterns of logic’s.

So along with re-entrancy attack there are many more vulnerabilities possible
in solidity. Solidity is the language used for writing smart contracts for Ethereum
blockchain and polygon blockchain and both blockchain are base of billion of
ethers.Analysts have realized that prior to smart contracts being implemented,
vulnerability analysis is crucial. For this examination, there are three primary
approaches: formal, dynamic, and static. Every approach has advantages and dis-
advantages of its own [11]. For example, while dynamic analysis tools evaluate
contracts as they are being executed, they may result in slower testing than static
analysis tools, which can be effective but may also yield false positives and neg-
atives. Tools that make use of these methods are being created in order to find
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vulnerabilities before they are implemented on the blockchain. There is a list of
available tools for analysis of smart contract. But we found that smart contract
analysis tools are focusing on maximum 5-6 vulnerabilities at a time and every
tool is depends on version of solidity so version dependency of tools is the weak
point of tools. Inferences of tools:-

« Tools are failed to detect obfuscated patterns.

« Tools are version dependent.

« Tools fail to analysis the enhanced complexity of code.

Table 1: Literature survey of Solidity obfuscation tools

Year Objective Approach Dataset Findings
. . E i t ith
BiAn: smart contract source | Code Obfuscation | 1000 buggy bzpenmesrrlnzn \chm—
2023 [41]| code obfuscation using BiAn tool smart contracts tra%%sy
By substituting char-
Smart Contract Obfuscation | acters with random . .
. Five techniques for
Technique to Enhance Code | counterparts, or NA obscuring a  smart
2022 [21]| Security and Prevent Code | statistical substi- &
o1 . contract.
Reusability tution, procedures
function.
Smart Contracts Obfusca- | Crypt hi b- .
mart  Lontracts blusca ryptographic o No secure setup is de-
tion from Blockchain-based | fuscation  scheme | NA .
2022 [34] . signed yet.
One-time Program for smart contracts
. Data fl d -
WASALI: Uncovering Vulner- aa tow and con
PR . 3,340 obfus- | trol flow obfuscation
abilities in Wasm Smart Con- | Concolic fuzzer .
2022 [9] cated samples using popcount algo-
tracts .
rithm
SmartFast: an accurate and .
. . . Feature extraction for
robust formal analysis tool | Taint tracking tech- .
13,687 contracts | 3 types of vulnerabili-
2022 [23]| for Ethereum smart con- | nology ties
tracts
SADPonzi: Detecting Opcodes feature ex-
. ; . . 1,395 contracts .
and Characterizing Ponzi | Symbolic execution and 133 pongi | traction work for Lay-
2021[8] | Schemes in Ethereum Smart | technique p out obfuscation and
contracts) .
Contracts data flow obfuscation
When a contract’s
complexity rises,
10  vulnerabil- | it is evident that
. Code  Obfuscati .
Source Code Obfuscation for usoine uscalion | iiies and 300 | most smart contract
2020 [41]| Smart Contracts SIng obfuscated static analysis tools
BiAn tool
smart contracts | perform worse when
the original contracts
are obscured.

SADPonzi mechanism is tool which detect four type of obfuscation techniques
DFO (Data flow obfuscation) CFO (control flow obfuscation) LAO (layout Obfus-
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cation) and combination of LAO and DFO and Smart Contracts. Obfuscation of
Blockchain-Based One-time Program piece also explores obfuscation. A blockchain
uses a corrupted circuit and witness encryption. All information, including the
algorithm and any hard-coded secrets, are kept private by the proposed system.
Its security relies on proven blockchains and doesn’t necessitate a trusted hard-
ware majority or even a majority of truthful participants in order to function.

This tool only detect few obfuscation transformations only. But if we manip-
ulate data using more than one technique than this method fail to detect obfus-
cation.

Blockchain-enabled Cryptographically-secure Hardware Obfuscation [18]. This
study offers a revolutionary Blockchain-enabled, cryptographically-secure hard-
ware obfuscation strategy that is backwards-compatible with existing circuit syn-
thesis and fabrication methods. Here, Proof-of-Stack Blockchain protocols and
witness encryption algorithms ensure the safety of the obfuscation rather than
just monitoring the supply chain via the Blockchain. WASAIL: Uncovering Vul-
nerabilities in Wasm Smart Contracts [9]. According to this paper we found that
there is no tool for bytecode obfuscation tool available so they can obfuscated
the code using two techniques. The first thing is to hide its data trail to encode
function arguments using the pop-count algorithm [9], which tally’s the number
of bits set to ‘1’ in the provided value. Second, it injects recursion invocations into
the bytecode at locations where the entry condition can never be satisfied, which
obscures the control flow.

4 Proposed Work

In this section we discussed about the proposed work in figure 6 which is based
on CFG of the source codes. The core of most static software analysis is the rep-
resentation of a program structure in the form of a control flow graph (CFG) or
call graph. we recover CFG and call graph information from both original and ob-
fuscated source codes. We determine the total number of basic blocks, call graph
edges, and control graph edges by traversing the respective graphs. These de-
tails are what we use to evaluate a (obfuscated) program complexity. The data
analysis results are displayed in Table II. Obfuscated programs are more compli-
cated than their unmodified counterparts across the board. We further analysis
the Cyclomatic metric is defined as

Cyclomatic = E - N + 2 where E and N stand for the total number of edges
and nodes in a directed graph. The number of knots in a CFG represents the
total number of edge crossings in that graph. To some extent, the number of log-
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ical branches in a program can be inferred from these two measurements. Table
IT demonstrates that following Turing machine obfuscation, both the knot and
cyclomatic number grow significantly for both scenarios. We conclude that the
promising results displayed in Tables II and figure 4 and 5 graphs demonstrate
that obfuscation adds security layer which enhances complexity to the original
algorithms. Algorithm also shown in section VI (Proposed Work). After execut-
ing algorithm, we can see the results in table II, illustrates the number of call
graph edges with the growth of obfuscation levels. According to empirical evi-
dence, the number of call graph edges grows in tandem with the obfuscation level.
Naturally, as obfuscation levels rise, obfuscated programs get more complex. In
the next section, the algorithm used in the proposed work is explained.

4.1 Algorithm

Procedure EXTRACT SMART CONTRACTS (Etherscan.io)

Stepl: Analysis of Smart Contracts  <— Awvailable tools

Step2: Check vulnerabilities “4—  and label the datasct
Step3: Extract bytecodes of vulnerable codes <— Solidity compiler
Step4: Extract opcodes of vulnerable codes <— Solidity compiler
Step5: Generate CFG of Opcodes

Step6: Analysis of CFG =~ «— Ether solve

Step7: Obfuscate Smart Contract

Step8: If Obfuscate (CFG) = Non-Obfuscate (CFG)

Then

Stepd: Repeat step 3 to step 7

Stepl0: Analysis CFG using tools

Stepll: if Obfuscate bytecode = Non_obfuscate_bytecode

Then

Stepl2: Same complexity

Else

Stepl3: if obfuscation_bytecode !=Non_obfuscationcode

Then

Complexity enhanced

End if
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We deduce the CFG from the bytecode of Ethereum smart contracts. Bytecode
Parsing use raw bytecode where the analysis begins. Finding the appropriate
header mentioned in the official literature will help us to locate the metadata sec-
tion [2]. When metadata has undocumented experimental features, the header is
different. By manually looking at the bytecode of several contracts, we deduced
the header structure of experimental instances that were not explicitly disclosed.
The metadata is needed to determine which version of the Solidity compiler was
used to create the bytecode. The Control Flow Graph (CFG) is a directed graph
reflecting the flow of execution, nodes are the basic blocks of program (patterns
of opcodes with no jumps, except in the last opcode). A basic block is a set of
instructions that are executed sequentially between a jump target and a jump
instruction without the presence of any other instructions that change the direc-
tion of control. JUMPDEST denotes the start of a new basic block, whereas JUMP,
JUMPI, STOP, REVERT, RETURN, INVALID, and SELFDESTRUCT opcodes de-
note the end of an existing basic block. Every basic block has a unique identifier
known as an offset, which indicates where its beginning opcode is situated in the
bytecode. Although the jump destination is not an opcode parameter and is in-
stead provided at execution time, this process is not always straightforward. We
classified jumps into two categories: pushed jumps and orphan jumps. A pushed
jump is a JUMP that has a PUSH opcode right before it so that its final point
quickly determined by looking at the value of the PUSH opcode. Edges are the
possible connections between succeeding basic blocks.

The edges of pushed loops are computed by the ethersolve tool . To achieve
this, each basic block is examined in accordance with its most recent opcode:

« When a JUMP is followed by a PUSH, the appropriate edge is added to the
CFG and the push argument is the jump destination offset.

« When a PUSH comes before a JUMPI, the true branch is the push argument,
which is regarded as the JUMPI destination offset. The false branch leads
to the block after it (in offset order). In this instance, the CFG is expanded
to include the two related edges.

+ JUMP not immediately preceded by a PUSH: The jump must be resolved
by symbolic stack execution because it is not an easy problem to handle.

« There are no successors for REVERT, SELFDESTRUCT, RETURN, INVALID,
and STOP since the control flow is broken.

'https://github.com/SeUniVr/EtherSolve
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« If not, the basic block is located at the following point in the bytecode and
the control flow continues.

The approach uses a DFS (Depth-First Search) to iterate through the CFG while
maintaining a stack state for each fundamental block.

« Entry blocks : Entry block is the start point of CFG.
+ CFG edges: Edges used to connect the basic blocks of the CFG.

« Basic blocks : A basic block is a block of code that is run in order between
a jump target and a jump instruction, without any extra instructions that
change the flow of control. The code is broken down into smaller modules
by opcodes that modify the program’s control flow. A basic block’s execu-
tion is terminated by the opcodes JUMP, JUMPL, STOP, REVERT, RETURN,
INVALID, and SELFDESTRUCT, while a new block’s execution is initiated
by the opcode JUMPDEST. An offset, or the location of an instruction’s first
opcode in the bytecode, is a distinctive marker for each basic block. There
is a JUMPDEST at the beginning of each basic block and an opcode that
changes the flow of control at the end of each one. After the code has been
broken down into its constituent parts, we may move on to computing the

edges.

« Dispatch blocks : The fallback function’s entry point can be found via a
dispatcher block. A smart contract’s execution can be kicked off with a
transaction that transfers more than just money. To ensure that the correct
function is executed, the compiler inserts a dispatcher into the contract
code from the very beginning.

« Invalid blocks : Invalid blocks are denoted by red boarder and blocks are
invalid if they end with REVERT, STOP, RETURN.

These are the type of blocks which are the part of CFG and opcodes patterns are
used for identification of vulnerabilities. But due to obfuscation many unused
and bug blocks are added in CFG which make CFG analysis more complicated.
In table I we have analysis the CFG changes after and before obfuscation. And,
in table III analysis results using available tools.

4.2 Tables

In this section we discussed about the Comparison of CFG Graph complexity be-
fore and after obfuscation of code. And we have calculated the graph complexity
in terms of complexity of graph in table II.
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5 Dataset

SWC registry > and Messi-Q smart > contract dataset were mined for smart con-
tracts, then we obfuscated each vulnerability by hand using a variety of meth-
ods like dead code insertion, control flow obfuscation, renaming of variables and
insert opaque code and then create a dataset and dataset contains 3320 smart
contracts. Obfuscated smart contracts data-set is analysed and examined the com-
plexity of the graph. We examine how the intricacy of smart contracts has grown
together with their gas use and the failure rate of existing methods in identifying
vulnerabilities in smart contracts has dropped.

6 Evaluation

Randomly selecting 500 contracts containing 10 types of bugs. We use BiAn tool
to generate obfuscated contracts and compile them with solc to produce byte-
code and manually label the bug locations of the obfuscated contracts and create
a public buggy contract dataset. BiAn tool make the contracts more complex,
then we employ Ethersolve, a smart contract CFG (Control flow Diagram) gener-
ator which convert the source to bytecode and generate blocks for opcodes corre-
sponding to byte-code. Calculate the number of Edges and blocks inside the CFG
and compare the blocks and edges between the original and obfuscated contracts.
The result, as shown in figure 7 and figure 8 demonstrates that BiAn can multiply
the complexity of the contracts along with the gas consumption. Gas consump-
tion in obfuscated code might increase for a variety of reasons. First is complexity
of Obfuscation techniques sometimes require adding new layers of complexity to
the code. Second, expanded bytecode size due to obfuscation. Third, Obfuscation
may result in duplicate or superfluous processes in the code. Fourth, deploying
obfuscated smart contracts can result in higher initial gas prices. Last, but not
least Obfuscated code may take longer to execute due to its increased complex-
ity or poor design. When we evaluate different Solidity static analysis tools, we
use obfuscated contracts and observe their performance and complex contracts
were analyzed the losses and efficiency. We have selected 5 state-of-the-art tools.
These tools are free to use; 2) These tools use Solidity contract and compiled
bytecode as input. These 5 tools used to detect vulnerabilities in original and ob-
fuscated contracts. However, tools detect only 6 types of bugs out of 10. Among
the five tools. Oyente and Orisis are unable to evaluate obfuscated contracts, even

Zhttps://swcregistry.io/
*https://github.com/Messi-Q/Smart-Contract-Dataset
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if they can be successfully worked for simple smart contracts.

7 Results

In this section, we will analysis the results of obfuscated code using a variety
of various obfuscation methods. Results are divided in 2 phases in first phase
we collect the smart contracts and apply the CFG technique. In second, phase
we obfuscate the smart contract and create a new dataset which contain only
obfuscated smart contract and then apply CFG.

In first phase all smart contracts are classified according to different vulnera-
bilities and then analysis the smart contracts using available tools and execution
time of smart contract using different tools mentioned in table III. In table III we
have mentioned the time of execution of smart contracts using tools in minutes.
Some of the tools mentioned in table III are failed to find few vulnerabilities and
some are partially failed. After calculating time of execution of each smart con-
tract we build the CFG of each smart contract using Ethersolve tool [13]. In table
II we have mentioned the analysis of CFG details like number of edges, number
of basic blocks, number of entry blocks and complexity of CFG. Along, with this
in Figure 4 using graph also we have shown the complexity of the CFG’s. Next, in
phase second, we obfuscate the smart contract dataset using BiAn tool [41]. Af-
ter obfuscation we analysis the obfuscated codes using CFG’s and we found that
complexity of CFG’s enhances and increase in number of edges along with ba-
sic blocks and dispatch blocks as shown in Table III. Then in Table II we analysis
the complexity of CFG’s before obfuscation and after obfuscation and mentioned
the complexity variation in Figure 4. Figure 5 shows that time variation for each
vulnerabilities using different available tools with and without obfuscation.

Along with these two phases after obfuscation process when we analyses the
byte code and opcodes, we find that numerous unneeded opcodes are added into
the code. These opcodes didn’t have any effect on the code itself, but they did
make the code more complicated. Because we have demonstrated in the CFG
diagram that the CFG is rapidly changing, the degree of difficulty of the graphs
is listed in table II. We have examined the changes occurred before and after
obfuscation in CFG’s.

When we analyse these obfuscated smart contracts using static tools such as
Mythril, Oyente, Slither, Securify, Silther and Manticore, we miss the accuracy
of tools because of Obfuscation vs Static tool, obfuscation protect against reverse
engineering,Obfuscation vs Dynamic tool, complicated the code and obfsuaction
vs formal verification concealing the code logic. So we finally conclude that ob-
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fuscation add a security layer for smart contracts. And increase the complexity
of smart contracts which makes difficult to alter the motive of smart contracts
by anonymous node.

8 Conclusion

Obfuscation has been demonstrated to be necessary and once it has been brought
to light in our study, it ought to be implemented into publicly available smart
contracts. Because of its adaptability, ease of use, low cost, significant improve-
ment in security, and ability to prevent attackers from easily exploiting smart
contracts, obfuscation should be used in blockchain explorers. This is because
obfuscation can improve security and prevent attackers from easily taking ad-
vantage of smart contracts. In addition, code may execute more slowly as a result
of performance overhead caused by obfuscation. It makes debugging and main-
tenance more difficult, making it more difficult for engineers to find faults and
comprehend the code. Compatibility problems could also arise, and resource use
might be impacted by the larger code. Lastly, dealing with obfuscated code may
present a challenging learning curve for novice coders.obfuscation contributes
significantly to the enhancement of the level of security. We presented a variety
of various case studies on code reuse and blockchain security throughout the
course of this paper.

In addition, to the best of our knowledge, there is no tool that can analyse
the vulnerabilities in obfuscated smart contracts. Available tools failure rate is
increased in case of obfuscated smart contracts. We have reason to expect that
the results of our research will make a significant contribution to the safety of
blockchains and assist in reducing the likelihood of code being reused.

In our future work, we plan to examine other obfuscation techniques and anal-
ysis utilising additional tools in order to make it more difficult for attackers to
comprehend the code. And we will further try to develop a tool for vulnerabilities
analysis of obfuscated smart contracts.
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