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Here, we propose an Opposition-based Genetic Algorithm (OBGA) to design and
solve a Multi-path Routing Problem with Risk (MPRPwR). We consider a person
purchasing some precious products (jewellery, electronic gadgets, etc.) from some
different shops/wholesalers at different places with predetermined demands and
having some risks of theft along the routes of routing. Here, two types of risks-one
depending on distance and amount of valuable materials and other pathwise are
considered. Thus the problem is to find a round trip starting from and ending to
the depot after visiting all the shops and collecting the precious products at a min-
imum system cost under a risk constraint. Here we introduce different alternate
paths for travel between the shops. To solve it, OBGA with probabilistic selection,
comparison crossover and generation dependent opposition-based mutation is de-
veloped and tested against some standard test functions. The effectiveness of our
model (MPRPwR) solved by the proposed algorithm (OBGA) is illustrated. A stan-
dard Genetic Algorithm (SGA) is used for comparison with OBGA. As particular
cases, the model has been solved with single path and path-dependent risks.
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1 Introduction

1.1 Motivation

In India, after Foreign Direct Investment (FDI), nowadays, business centres (shop-
ping mall, retail shop, etc.) are being established in remotely located urban ar-
eas [6]. In developing countries, robbery is a very common phenomenon dur-
ing journey/transportation. Purchasing of high valued products such as orna-
ments, jeweleries, etc. from different remotely located shops suppliers is chal-
lenged due to robbery, etc. [13] and involves some risks. Normally, people make
this type of purchases under some risk. Through out the world, due to the de-
velopment of infrastructure, nowadays alternate paths/connections among the
different places are available. In India, National Highways (NHs) and prime min-
ister Yojana Roads have connected different cities and villages. To maintain these
roads, some taxes (called fixed charge, say) are collected at some places on the
roads. These facts prompted us to consider the following fixed charge cash-in-
transit problem.

A person starts with a car from his town and purchases some valuable orna-
ments as per predetermined demands from some fixed places (shops) and comes
back to his place. During the journey, there are several connecting roads between
different destinations (places), and risks of robberies are involved on some routes.
The person plans to operate the tour under a specified risk and the problem is to
find the optimum path under the specified risk so that total system cost (travel
cost+loading cost+fixed charge).

This is a fixed charge routing problem, which is the generalization of TSP
type problems. This may also be considered as a pick-up/delivery/cash-in-transit
problem with risk [3], [11]. Basically, it is a routing problem of NP-hard nature.

As the proposed Multi-path Routing Problem with Risk (MPRPwR) is of 𝑁𝑃-
hard nature, to solve it, we develop an opposition-based genetic algorithm (OBGA)
with a probabilistic selection, comparison crossover and opposition based (OB)
mutation.

Opposition-based learning (OBL) was first investigated by [14]. The probabil-
ity using OBL to get optimal solution, is more than the other methods [15]. In the
concept of OBL, first we evaluate the solutions and their opposite solutions and
from those, the better solutions are generated for the next iteration. Focusing on
that, in this investigation, we use opposition based GA for discrete optimization
problems.

The above proposed MPRPwR is formulated and numerically illustrated by
the developed OBGA. Comparison are performed on the proposed OBGA using
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benchmark TSPLIB problems [9].

1.2 Literature Review

Traveling salesman problem (TSP) is an age-long problem and has several appli-
cations in real life areas. Real life application of TSP are observed in Pickup and
Delivery [4], routing [2], traveler purchaser problems [7], etc. Recently, [5] in-
vestigated constrained solid TSPs in different environments (such as crisp, fuzzy,
random, random-fuzzy, fuzzy-random and bi-random) and solved through GA.

Recently, [1] focused on the security for high-value shipment/transportation
in the routing problem. They considered mixed integer linear programming for
formulation of the problem with time window and dynamic risk index. [11] in-
vestigated cash-in-transit and risk threshold vehicle routing problem. They con-
sidered risk in terms of robbery depending on the distance and amount of cash
carried. Also they express risk using occurrence of the event and the vulnera-
bility. Similar type of another work on cash-in-transit and risk threshold was
investigated by [12] and solved using ACO-LNS algorithm.

In the above formulations, none considered multiple routes between the desti-
nations/places. In the present investigation, following [11], we have formulated
MPRPwRwithmultiple paths and both path-dependent (obtained frompast records)
and path-goods weight dependent risks.

Since GA is a well established meta-heuristic approach to solve combinatorial
optimization problem, we solve the proposed MPRPwR by a variant of GA. For
more accurate findings and maintain diversity of solution space, we introduce
opposition-based learning in GA. [10] focused on OBGA with opposition-based
initialization with modified crossover for community detection problem. They
only considered OB in initialization. In this paper, we impose OB in initialization
as well as mutation process. [16] focused on OBACO for solving symmetric TSP.
They also discussed on different strategies for pheromone update rules- direction,
indirection, and random methods including ACO-Index, ACO-MaxIt, and ACO-
Rand.

In this investigation, our proposed OBGAs, combine with probabilistic selec-
tion, comparison crossover and a generation dependent OB mutation. The mod-
els are illustrated numerically.

Novalities in this investigation are as follows:

• Opposition-based initialization is introduced in genetic algorithm

• Probabilistic selection procedure, comparison crossover and generation de-
pendent OB mutation are introduced.
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• Multi-path routing with risk is formulated and solved by OBGA.

The paper is organized as follows: Section 1 presents a concise introduction
with motivation in section 1.1 and literature review in section 1.2. Section 2 ex-
plains details process of OBGA. The mathematical formulation of the problem is
given in section 3. Section 4 used for computational experiments of the OBGA.
In section 5, solution methodology is presented. Sections 6 and 7 represent nu-
merical experiments and discussions respectively. Conclusion and future scope
are presented in section 8.

2 Proposed opposition-based genetic algorithm (OBGA)

2.1 Representation

Let there are M paths covering N cities. For i𝑡ℎ path, N-dimensional integer vec-
tors X𝑖 = (x𝑖1, x𝑖2,⋯, x𝑖𝑁 ) are created where x𝑖1, x𝑖2,⋯, x𝑖𝑁 indicate N consecutive
nodes in a tour. Here, x𝑖𝑗 , i=1, 2, ⋯, M and j=1, 2, ⋯, N are randomly generated
by a random number generator function between 1 to N maintaining the TSP
conditions. Fitnesses of path are evaluated by summing the costs between the
consecutive nodes of each solution (chromosome). The i𝑡ℎ solution fitness in the
solution space is presented by f(X𝑖). As the population size is M, therefore M
numbers of chromosomes are randomly generated.

2.2 Opposition-based learning

Till now, mainly opposition-based learning are used for solving continuous op-
timization problems. Opposition-based learning, basically implemented to make
diversity in continuous search space, Focusing on that, we want to solve combi-
natorial/discrete optimization problems.

The opposition based concept in continuous domain, for D dimensional vec-
tors (𝑅𝐷), is first introduced by Tizhoosh (cf. [14]). Assume, T = (𝑦1, 𝑦2, ⋯, 𝑦𝐷)
be any point in 𝑅𝐷 , where 𝑦1, 𝑦2, ⋯, 𝑦𝐷 ∈ 𝑅 and 𝑦𝑖 ∈ [𝑎𝑖, 𝑏𝑖] , ∀ i ∈ 1, 2, ⋯ , 𝐷. The
opposite point 𝑇 𝑐= (𝑦𝑐1, 𝑦𝑐2, ⋯,𝑦𝑐𝐷) defined as 𝑦𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 - 𝑦𝑖. Here, the opposite
point of y (in one dimensional) is shown in Fig. 1.

Figure 1: Example of opposition base point
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2.3 Initialization

Using this approach in initialization shown in Fig. 2 of proposed algorithm let us
consider, first node is fixed (depot), represented by 1 and initial population size=4.
Then after using opposition-base learning, population size becomes 4+4=8. Now,
we select best 4 out of 8 chromosomes using subsection 2.4.

Figure 2: Opposition base initialization

2.4 Selection (Probabilistic selection)

We first calculate the Boltzmann-Probability ( [5]) for each chromosome of the
initial population using

p𝐵=𝑒((𝑔/𝐺)∗(𝑓𝑚𝑖𝑛−𝑓 (𝑋𝑖))/𝐾𝑇 ),
where, T=T0(1-a)𝑘 , 𝑘 = (1 + 𝐶 ∗ 𝑟𝑎𝑛𝑑[0, 1]), C=rand[1, 100], g=current generation
number, 𝐺= max-gen, T0= rand[50, 140], a=rand[0, 1], f(X𝑖) is the objective func-
tion, 𝑓𝑚𝑖𝑛=min f(X𝑖), i=1,2,⋯, N.
For the mating pool, the following process is followed. First, a predefined value,
say probability of selection (𝑝𝑠) is assigned. If each chromosome of 𝑓 (𝑋𝑖), a ran-
dom number, r ∈[0, 1] is generated. If 𝑟 < 𝑝𝑠 or 𝑟 < 𝑝𝐵, then the correspond-
ing chromosome is selected for the mating pool. Otherwise, chromosomes cor-
responding to 𝑓𝑚𝑖𝑛 is selected for the mating pool. Finally, out of these chromo-
somes, 4 chromosomes are selected for crossover.

2.5 Crossover (comparison crossover)

Initially, two individuals (parents) are selected randomly from the mating pool,
based on the random number generated between [0, 1]. Select the first parent
(say P1) according to 𝑟 < 𝑝𝑐 . Similarly, other parent (say P2) is selected. Out of
these parents, children are created using comparison crossover. The procedure
to produce offspring is illustrated with an example for five node TSP (Fig. 3).
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Update the second parent

Figure 3: Comparison crossover for child 1 and 2

As we use comparison crossover and starting node of two parents are same
(1) so, to generate second child, we update (reverse) the nodes of second parent
as shown in Fig. 3(d). After that following same process for second child as first
one.

2.6 Mutation

2.6.1 Generation dependent opposition based (OB) mutation

Here, we formulate a novel generation dependent OB mutation. Here generation
based p𝑚 (probability of mutation) is evaluate as

𝑝𝑚= 𝑡
𝑔 , t∈(0, 1). where, 𝑔 is the current generation number.

2.6.2 Mutation process

If 𝑟 < 𝑝𝑚, 𝑟 ∈ rand [0, 1], then corresponding chromosome is selected for muta-
tion. Opposition based mutation (except for 1𝑠𝑡 and last node, as depot is fixed)
shown in Algorithm 1 and Fig. 4.

Figure 4: Mutation process
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Algorithm 1 Generation dependent OB mutation
Step 1: set g=current generation number
Step 2: 𝑝𝑚= 𝑡

𝑔 , t∈(0, 1).
Step 3: for(i=0; i< 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; i++)
Step 4: 𝑟 = 𝑟𝑎𝑛𝑑(0, 1)
Step 5: if( 𝑟 < 𝑝𝑚)
Step 6: choose current solution 𝑎𝑖, (i=1, ⋯, N)
Step 7: mutated solution 𝑚𝑖=(1+N)-𝑎𝑖, (i=2, ⋯, N-1) (cf. Fig. 4)
Step 8: end if
Step 9: end for

After the selection, crossover andmutation procedures are obtained. If rand(0,1)
is less than the opposition jumping rate (JR), then total population is the exist-
ing population (4) and created opposition based population (4) and from these 8
chromosomes, we select best 4 chromosomes as per subsection 2.4.

Combination of the above steps leads to the proposed OBGA presented in Al-
gorithm 2.

Algorithm 2 Opposition-based genetic algorithm (OBGA)
Require: pop size, jumping rate (JR), current generation (g) and maximum gen-

eration (G)
Ensure: optimum results
Step 1. start
Step 2. randomly generate initial population(M)
Step 3. opposite population calculate, using subsection 2.2 (M’)
Step 4. g=1
Step 5. while (𝑔 <= 𝐺)
Step 6. selecting M fittest solutions from (M+M’) using subsection 2.4
Step 7. comparison crossover using subsection 2.5
Step 8. generation dependent OB mutation according to Algorithm 1
Step 9. if rand (0, 1) < 𝐽𝑅 then
Step 10. evaluate opposite population (M’) of current population (M)
Step 11. g=g+1
Step 12. end if
Step 13. end while
Step 14. end
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3 Proposed Multi-path Routing Problem with risk
(MPRPwR)

Table 1: Notation and description of parameters and decision variables

Notation Description
N number of nodes (1, 2, 3,⋯, N)

𝑖, 𝑗, 𝑘 index set
𝑄 set of nodes {1, 2, 3,⋯, N}, 𝑁 = 1 is depot
𝑃 set of routes 𝑟𝑞 ∈ {1, 2, 3,⋯ } = 𝑃
𝑥𝑖 𝑖𝑡ℎ visiting point
𝑥𝑖𝑗 binary decision variable, 𝑥𝑖𝑗 = 1 for the travel from 𝑖𝑡ℎ node to 𝑗 𝑡ℎ node, else, 𝑥𝑖𝑗 = 0

𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) traveling cost from 𝑖𝑡ℎ node to (𝑖 + 1)𝑡ℎ node using 𝑟𝑞 ∈ 𝑃 route per unit distance
𝑝(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) probability of a robbery happening between 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ nodes using 𝑟𝑞 ∈ 𝑃 route

𝑑𝑖 demand of materials at 𝑖𝑡ℎ node
𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) distance between 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ nodes using 𝑟𝑞 ∈ 𝑃 route

𝐷 total demand of collected materials
𝛾 (𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) vulnerability i.e, the probability of successful robbery

between 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ nodes using 𝑟𝑞 ∈ 𝑃 route
𝐿 per unit loading cost

𝑓 (𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) fixed cost (toll tax) between 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ nodes using 𝑟𝑞 ∈ 𝑃 route
𝐶𝑅 cumulative risk of the entire route
𝑅𝑚𝑎𝑥 maximum permissible risk of the entire route

3.1 Classical TSP (2DTSP)

Let 𝑐(𝑖, 𝑗) is the traveling cost from 𝑖𝑡ℎ city to 𝑗 𝑡ℎ city. Then classical TSP (CTSP)
can be mathematically represented as

Minimize 𝑍 = ∑
𝑖≠𝑗

𝑐(𝑖, 𝑗)𝑥𝑖𝑗 } (73.1)

subject to
𝑁
∑
𝑖=1

𝑥𝑖𝑗 = 1 for 𝑗 = 1, 2, ⋯ , 𝑁 ;
𝑁
∑
𝑗=1

𝑥𝑖𝑗 = 1 for 𝑖 = 1, 2, ⋯ , 𝑁
𝑁
∑
𝑖∈𝑆

𝑁
∑
𝑗∈𝑆

𝑥𝑖𝑗 ≤ |𝑆| − 1, ∀𝑆 ⊂ 𝑄; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 .

⎫⎪
⎬⎪
⎭

(73.2)

where Q={1, 2, 3,⋯, N} represents set of nodes, 𝑥𝑖𝑗 are the decision variables. If the
salesman travels from 𝑖𝑡ℎ city to 𝑗 𝑡ℎ city, then 𝑥𝑖𝑗 = 1, else 𝑥𝑖𝑗 = 0. The first two
constraints in Eq. 73.2 imply the visit of a node only once and the third constraint
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eliminates the sub route. Then the mentioned CTSP can be represented as

determine a complete tour (𝑥1, 𝑥2, ⋯ , 𝑥𝑁 , 𝑥1) to minimize

𝑍 =
𝑁−1
∑
𝑖=1

𝑐(𝑥𝑖, 𝑥𝑖+1) + 𝑐(𝑥𝑁 , 𝑥1)
𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, ⋯ , 𝑁 . 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐸𝑞. 73.2.

⎫⎪
⎬⎪⎭

(73.3)

3.2 Multi-path TSP (MPTSP)

Here, we consider the availability of several paths connecting the cities. Let
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) is the traveling cost from 𝑖𝑡ℎ city to (𝑖 + 1)𝑡ℎ city using (𝑟𝑞)𝑡ℎ route
per unit distance. The salesman determines entire tour (𝑥1, 𝑥2, ⋯,𝑥𝑁 , 𝑥1) using
the routes 𝑟𝑞 ∈ {1, 2, ⋯ , 𝑃} for the tour from 𝑥𝑖 to 𝑥𝑖+1, where 𝑥𝑖 ∈ {1, 2, ⋯ , 𝑁 } for
𝑖 = 1, 2, ⋯ , 𝑁 , 𝑟𝑞 ∈ {1, 2, ⋯ , 𝑃}. Then this problem is mathematically represented
as:

minimize 𝑍 =
𝑁−1
∑
𝑖=1

𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) ∗ 𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) + 𝑐(𝑥𝑁 , 𝑥1, 𝑟𝑞) ∗ 𝑑𝑖𝑠(𝑥𝑁 , 𝑥1, 𝑟𝑞) }(73.4)

3.3 MPTSP with risk

Aman purchases the items from some markets as per the demands. He starts the
journey from the depot (first node, say) and following the TSP type tour scheme,
travels to the market places (nodes) using one of the available routes at nodes
and purchases the item.

3.3.1 Measuring the risk

The robbed risk between the 𝑖𝑡ℎ and 𝑗 𝑡ℎ node using 𝑟𝑞 route can be measured as
follows:
(1) 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑟𝑞) (denoted by 𝑝𝑖,𝑗,𝑟𝑞 ) is the probability of occurrence of robbery. It
depends on various circumstances such as available paths, type of vehicle, road
condition, weather condition, time (day/night), etc.
(2) The vulnerability 𝛾 (𝑥𝑖, 𝑥𝑗 , 𝑟𝑞) (denoted by 𝛾𝑖,𝑗,𝑟𝑞 ) is the probability of successful
robbery. It also depends on various circumstances such as efficiency of thieves,
activeness of police, etc.
(3) The risk is also depends on the length (𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑗 , 𝑟𝑞)) of the edge traversed by
the vehicle
(4) It also depends on the amount of collected materials (𝑑𝑖).
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For the present model, two types of probability of robbery are considered. First
we assume that robbery, depends on length (𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑗 , 𝑟𝑞)) of the edge and col-
lected materials (𝑑𝑖). So 𝑝𝑖,𝑗,𝑟𝑞 is evaluated based on distance and pick up materi-
als. For the second case, this robbery probability is taken from the path wise past
records, independent of distance and materials. The successful robbery parame-
ter, (𝛾𝑖,𝑗,𝑟𝑞 ) is also taken from past records of that area.

3.3.2 Risk at each arc with certain probability

As the chance of occurring the robbery, etc. is not certain, so risk can be expressed
in terms of probability. Fig. 5 represents the overview of probabilistic risk.

Figure 5: Graphical representation of probabilistic refusal

In this investigation probabilities of risk,
𝑝𝑖,𝑗,𝑟𝑞 (𝑑𝑖𝑠𝑖,𝑗,𝑟𝑞 , (𝑑1, 𝑑2, ⋯ , 𝑑𝑁 )), 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 can be assigned to the arc. Here, 1𝑠𝑡
node represent the depot. Risk in the arc 1-2 (i.e, between 1𝑠𝑡 and 2𝑛𝑑 node with
route 𝑟𝑞) with probability 𝑝1,2,𝑟𝑞 (𝑑𝑖𝑠1,2,𝑟𝑞 , 𝑑1) is,

= 𝑝1,2,𝑟𝑞 (𝑑𝑖𝑠1,2,𝑟𝑞 , 𝑑1) ∗ 𝛾1,2,𝑟𝑞
Risk in the arc 2-3 via 1-2-3 (i.e, among 2𝑛𝑑 and 3𝑟𝑑 node with route 𝑟𝑞)) with

probability 𝑝2,3,𝑟𝑞 (𝑑𝑖𝑠2,3,𝑟𝑞 , (𝑑1, 𝑑2)) is,
=(1-𝑝1,2,𝑟𝑞 (𝑑𝑖𝑠1,2,𝑟𝑞 , 𝑑1)) ∗ 𝑝2,3,𝑟𝑞 (𝑑𝑖𝑠2,3,𝑟𝑞 , (𝑑1, 𝑑2)) ∗ 𝛾2,3,𝑟𝑞
Thus, Risk in the arc n-1 via 1-2-3-⋯-n-1(i.e, among 𝑛𝑡ℎ and 1𝑠𝑡 node with route

𝑟𝑞) with probability 𝑝𝑛,1,𝑟𝑞 (𝑑𝑖𝑠𝑛,1,𝑟𝑞 , (𝑑1, 𝑑2, ⋯ , 𝑑𝑛)) is,
= (1-𝑝1,2,𝑟𝑞 (𝑑𝑖𝑠1,2,𝑟𝑞 , 𝑑1))*(1-𝑝2,3,𝑟𝑞 (𝑑𝑖𝑠2,3,𝑟𝑞 , (𝑑1, 𝑑2)))* ⋯

* (1-𝑝𝑛−1,𝑛,𝑟𝑞 (𝑑𝑖𝑠𝑛−1,𝑛,𝑟𝑞 , (𝑑1, 𝑑2, ⋯ , 𝑑𝑛−1))) ∗𝑝𝑛,1,𝑟𝑞 (𝑑𝑖𝑠𝑛,1,𝑟𝑞 , (𝑑1, 𝑑2, ⋯ , 𝑑𝑛)) ∗ 𝛾𝑛,1,𝑟𝑞
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3.3.2.1 Model A: Risk depends on distance and collectedmaterials Themodel
mathematically formulated as:

Min 𝑍 =
𝑁−1
∑
𝑖=1

𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) ∗ 𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) + 𝑐(𝑥𝑁 , 𝑥1, 𝑟𝑞) ∗ 𝑑𝑖𝑠(𝑥𝑁 , 𝑥1, 𝑟𝑞)

+
𝑁
∑
𝑖=2

(𝑑𝑖 ∗ 𝐿) +
𝑁−1
∑
𝑖=1

𝑓 (𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) ∗ 𝜉 (𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞)+
𝑓 (𝑥𝑁 , 𝑥1, 𝑟𝑞) ∗ 𝜉 (𝑥𝑁 , 𝑥1, 𝑟𝑞)

⎫⎪⎪
⎬⎪⎪
⎭

(73.5)

subject to 𝐶𝑅 =
𝑁−1
∑
𝑖=1

𝑅(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞 , 𝑑𝑖) + 𝑅(𝑥𝑁 , 𝑥1, 𝑟𝑞 , 𝑑𝑖) < 𝑅𝑚𝑎𝑥 } (73.6)

𝑤ℎ𝑒𝑟𝑒 𝑟𝑞 ∈ {1, 2⋯ , 𝑃}
𝑁
∑
𝑖=1

𝑑𝑖 = 𝐷, 𝑑1 = 0 } (73.7)

where, values of 𝑅(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞 , 𝑑𝑖) presented in Table 2

Table 2: Values of 𝑅(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞 , 𝑑𝑖)

weight (kg)/Distance (km) 0≤dis< 𝑙1 𝑙1 ≤dis< 𝑙2 𝑙2 ≤dis< 𝑙3
𝑑0 ≤ 𝑑𝑖 < 𝑑1 𝑅4 𝑅7 𝑅10𝑑1 ≤ 𝑑𝑖 < 𝑑2 𝑅5 𝑅8 𝑅11𝑑2 ≤ 𝑑𝑖 < 𝑑3 𝑅6 𝑅9 𝑅12

(Here, 𝑑0, 𝑑1, 𝑑2, 𝑑3, 𝑑4 are amount of collected materials, 𝑙1, 𝑙2, 𝑙3 are length/ dis-
tance, 𝑅1, 𝑅2, 𝑅3, ⋯ , 𝑅12 are risk)
Here total risk (CR) cumulatively increases during travels along the routes. 𝑅𝑚𝑎𝑥
is the maximum acceptable risk.

Here in Eq. 73.5 objective function Z has three parts, first part indicates the
traveling cost, second part the loading cost of the precious items, and third part
for fixed charge though out the routing. Eq. 73.6 represents risk constraints (𝑅𝑚𝑎𝑥 )
which is used for feasible path. Total demand (D) is equal to the cumulative col-

lection of materials from all nodes (
𝑁
∑
𝑖=1

𝑑𝑖) and first node is fixed for depot (𝑑1=0).
For clarity, the proposed MPRPwR is illustrated in Fig. 6, with data from Table 7.
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Figure 6: Graphical representation of model

3.3.2.2 Model B: Risk independent of distance and collected materials In the
case, the model mathematically is formulated as:
Objective function is same as Model A (given in Eq. 73.5).

subject to 𝐶𝑅 =
𝑁−1
∑
𝑖=1

𝑅(𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) ∗ 𝛾 (𝑥𝑖, 𝑥𝑖+1, 𝑟𝑞) + 𝑅(𝑥𝑁 , 𝑥1, 𝑟𝑞)∗
𝛾 (𝑥𝑁 , 𝑥1, 𝑟𝑞) < 𝑅𝑚𝑎𝑥 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡ℎ 𝐸𝑞.73.7

} (73.8)

4 Computational Experiment

We design the algorithm in C/C++ using the Codeblock compiler on a 5𝑡ℎ Gen.
Intel Core i3 CPU @ 3 GHz. The values of the parameter are given in Table 3.

Table 3: Parameters values chosen for numerical experiment

Parameters Value/Range Parameters Value/Range
Max_Generation 200–1000 𝐷 152
Number of Chromosome 50–150 𝑝𝑚 0.31
𝑝𝑐 0.49 𝑅𝑚𝑎𝑥 (Model A) 3.15
𝐽𝑅 0.32 𝑅𝑚𝑎𝑥 (Model B) 3.75
𝐿 INR 30

4.1 Test results for OBGA

The performance of the intended OBGA is established by solving 20 standard
benchmark problems from TSPLIB [ [8]]. Table 4 represents the results of OBGA.
Comparing all the problems in terms of the total cost, number of iteration and
cpu time. All the results are obtained using 25 independent runs and taken using
two different algorithms- OBGA and GA (with Roulette Wheel selection, Cyclic
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crossover, Random mutation). In the Table 4, ”BKS” indicates the best-known
solution, and ”BFS” indicates the best-found solution.

Table 4: Results for Standard TSP Problem (TSPLIB)

Instances BKS OBGA GA
BFS Iteration Time BFS Iteration Time

us16 6859 6859 56 0.04 6859 64 0.07
gr17 2085 2085 68 0.06 2085 79 0.14
gr21 2707 2707 159 0.09 2707 187 0.19
fri26 937 937 147 0.14 937 201 0.27

bays29 2020 2020 134 0.19 2020 157 0.54
dantzig42 699 699 245 0.35 699 270 0.87

eil51 426 426 298 0.65 426 367 1.34
berlin52 7542 7542 347 0.87 7687 407 1.57
st70 675 675 462 1.35 697 490 2.34
eil76 538 538 517 1.86 578 547 2.89
pr76 108159 108159 623 2.14 109295 779 3.07
rat99 1211 1211 748 2.71 1258 864 3.58
eil101 629 629 855 3.38 638 1143 3.96

kroA100 21282 21282 774 3.75 21618 1242 4.60
kroC100 20749 20901 896 4.71 21354 1329 5.94
kroA150 26524 26823 1167 5.04 26982 1468 7.29
kroB200 29437 29635 1334 5.76 29913 1614 8.37
a280 2579 2647 1469 7.27 27413 1795 10.25
pr299 48191 50875 1622 8.43 52743 1828 11.49
lin318 42029 43146 1985 8.57 45413 1997 11.62

5 Solutions of MPRPwR using OBGA

5.1 Solution methodology

The proposed algorithmOBGA is the combination of probabilistic selection, com-
parison crossover, and generation dependent OB mutation which was imple-
mented in C++ with 150 chromosomes and 1000 iterations in maximum. The pro-
posed MPRPwR are solved and numerical illustrated by the newly implemented
OBGA for some input data.

6 Numerical experiments

6.1 Input data

For experiment, we consider MPRPwR with 10 nodes (places) and 3 alternative
routes between every two nodes. The distance, traveling cost per unit distance,
fixed charge cost, probability of risk and vulnerabilitymatrices (Row-wise 1𝑠𝑡 , 2𝑛𝑑 ,
3𝑟𝑑 , 4𝑡ℎ and 5𝑡ℎ sets correspond to distances, traveling cost per unit distance, fixed
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charge cost, probability of risk and vulnerability) for MPRPwR are presented in
Table 5.

As mentioned earlier, there are three types of routes between two nodes with
the corresponding distance and traveling cost matrices along different routes for
the models. For the distance and traveling cost (a,b,c)(represented by (≡(0,1,2)))
(say), the values a, b and c are for the 1𝑠𝑡 , 2𝑛𝑑 and 3𝑟𝑑 routes respectively. Demand
(purchased amount) matrix (in weight) of materials is given in Table 6.

6.2 Routing Problems (Models-A and B) having single path between
the nodes

Instead of multi-paths, we assume that there is only one route for travel between
the nodes. Taking a particular path (’0’ in this case); the routing problem is solved
and results are given in Tables-8, and 9.

Table 6: Demand matrix

i/j 1 2 3 4 5 6 7 8 9 10
Demand (kg) 0 10 15 20 22 16 18 24 12 15

Table 7: Distance and collected weight dependent risk

weight (kg)/Distance (km) 0≤dis<20 20≤dis<40 40≤dis<60
0≤ 𝑑𝑖 <38 0.08 0.16 0.25
38≤ 𝑑𝑖 <76 0.16 0.33 0.50
76≤ 𝑑𝑖 <114 0.25 0.50 0.75
114≤ 𝑑𝑖 <152 0.33 0.66 0.99

740



New Frontiers in Communication and Intelligent Systems

6.3 Optimum results of MPRPwR (different Models)

Table 8: Results of models A and B

with risk without risk

parameters with muti-path with single path with muti-path with single path

path 1(0)-5(2)-9(0)-4(0) 1(0)-5(0)-10(0)-2(0) 1(1)-6(0)-4(0)-5(0) 1(0)-5(0)-9(0)-4(0)
-3(0)-7(2)-8(2)-10(2) -3(0)-7(0)-8(0)-6(0) -9(0)-8(2)-7(1)-3(0) -3(0)-7(0)-8(0)-6(0)

-2(0)-6(0)-1 -4(0)-9(0)-1 -2(0)-10(2)-1 -2(0)-10(0)-1
distance(km) 246 260 198 202

Model traveling cost(INR) 2044 2198 1597 1712
A loading cost(INR) 4110 4110 4110 4110

fixed charge(INR) 83 87 82 87
total cost(INR) 6237 6395 5789 5909

risk 3.15 3.15 3.71 3.75

path 1(2)-6(2)-5(2)-3(0)-7(1)-4(1) 1(0)-2(0)-10(0)-8(0)-3(0)-7(0)
-2(1)-10(2)-9(2)-8(2)-1 -9(0)-4(0)-5(0)-6(0)-1

distance(km) 213 249
Model traveling cost(INR) 2173 2411

B loading cost(INR) 4110 4110 -do-
fixed charge(INR) 201 297
total cost(INR) 6484 6818

risk 1.79 2.46

Table 9: Results of Model A and B using multi-path and without multi-
path result

Model A Model B

risk limit total cost total cost risk limit total cost total cost
(with multi-path) (with single path) (with multi-path) (with single path)

3.9 5789 (same) 5909 (same) 3.4 5789(same) 5909(same)
3.8 5789 (same) 5909 (same) 3.2 and above 5789(same) 5909(same)
3.7 5893 5947 3.0 5789 (same) 6036
3.6 5910 5960 2.8 5916 6360
3.5 6020 6072 2.6 5983 6703
3.4 6041 6087 2.4 5994 7324
3.3 6076 6395 2.2 6095 no feasible path
3.2 6237 6395 2.0 6119 no feasible path
3.1 no feasible solution no feasible solution 1.8 6484 no feasible path

1.7 and below no feasible path no feasible path

7 Discussion

Tables 8 and Fig. 7(a) represent the overall scenario of Model A. It is observed
that use of multi-path between the nodes gives less risk for the entire path, the
system cost is also less than the single path model. Same results are found for
the without risk cases (Fig. 7(b)).

In Table 8, the multi-path with risk is 1(0)-5(2)-9(0)-4(0)-3(0)-7(2)-8(2)-10(2)-
2(0)-6(0)-1. The distance, traveling cost, loading cost, fixed charge, total cost and
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(a) Models with all parame-
ters

(b) Cost of multi-path and single
path

Figure 7: Overview of models

(a) Model A (b) Model B

Figure 8: Graphical representation of risk and cost

risk are 246 km, INR 2044, INR 4110, INR 83, INR 6237 and 3.15 respectively.
Table 9 represents the total system cost with different risks. It is seen that

when risk limit decreases, the system cost increases (Fig. 8(a)), but when risk
limit is less than 3.1, it is unable to find feasible path in the system. Again when
risk increases, the system cost is minimized upto certain level (3.8). When risk is
more above than 3.8, the system cost remains unaltered (Table 9). This behavior
is as per expectation.

Similar scenarios are observed for Model B (Table 8, 9). Also for this model,
when risk limit decreases, the system cost increases (Fig. 8(b)), but when risk
limit is less than 1.79, we don’t get any feasible path in the system. Again when
risk is increased, the system cost is minimized upto certain level (2.83). When
risk is above than 2.83, the system cost remains unaltered.

Table 9 also furnishes that multi-path routing gives feasible paths with much
lower risks, which is not possible for the single path routing model.
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8 Conclusion and future scope

In this paper, opposition based genetic algorithm (OBGA) with (i) probabilistic
selection, (ii) comparison crossover and (iii) Generation Dependent OB mutation
are proposed and implemented successfully in some MPRPwR problems. In rout-
ing problems, we consider (i) risk constraint (ii) fixed charge (toll tax), (iii) loading
charge for the items. Here, two types of risk are considered along the routes-i.e
risk (i) depends on distance and amount of collected materials, (ii) depends on
the path only (from past records). This formulation can be used in the fields of
inventory control, supply-chain etc., for better managerial decision making.

The limitations of our investigation are that we consider hypothetical input
data for risk and vulnerability. In future, these models can be extended consid-
ering multi vehicles along with multi path among the nodes. Here OB is used in
initialization and mutation. OB can also be used in selection and crossover for
different versions of GA.
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Table 5: Input Data: Distance, traveling cost per unit distance and fixed
charge cost, probability of risk, vulnerability matrix

i/j 1 2 3 4 5 6 7 8 9 10

1 ∞ (29,27,33) (32,30,27) (37,34,32) (18,26,21) (18,16,14) (37,40,35) ( 39,35,32) (42,47,44) (32,29,26)

∞ (10,8,11) (9,8,11) (8,9,10) (9,7,11) (8,9,10) (11,9,8) (9,8,11) (7,9,11) (9,10,7)

∞ (110,111,118) (0,0,0) (8,9,10) (9,7,11) (8,9,10) (11,9,8) (9,8,11) (7,9,11) (9,10,7)

∞ (.29,.27,.33) (.32,30,27) (.37,.34,.32) (.18,.26,.21) (.18,.16,.14) (.37,.40,.35) (.39,.35,.32) (.42,.47,.44) (.32,.29,.26)

∞ (.10,.8,.11) (.9,.8,.11) (.8,.9,.10) (.9,.7,.11) (.8,.9,.10) (.11,.9,.8) (.9,.8,.11) (.7,.9,.11) (.9,.10,.7)

2 (29,27,33) ∞ (22,26,28) (30,26,31) (37,36,38) (48,46,43) (32,36,33) (44,46,47) (30,26,25) (16,15,17)

(10,11,8) ∞ (8,9,8) (9,10,11) (8,10,9) (7,9,10) (11,10,9) (8,9,8) (7,10,8) (11,10,9)

(0,0,0) ∞ (8,9,118) (9,10,11) (8,10,9) (7,9,10) (11,10,9) (8,9,8) (117,10,8) (11,10,9)

(.29,.27,.33) ∞ (.22,.26,.28) (.30,.26,.31) (.37,.36,.38) (.48,.46,.43) (.32,.36,.33) (.44,.46,.47) (.30,.26,.25) (.16,.15,.17)

(.10,.11,.8) ∞ (.8,.9,.8) (.9,.10,.11) (.8,.10,.9) (.7,.9,.10) (.11,.10,.9) (.8,.9,.8) (.7,.10,.8) (.11,.10,.9)

3 (32,30,27) (22,26,28) ∞ (32,36,39) (27,26,23) (37,39,41) (11,16,15) (34,38,35) (42,44,47) (32,37,34)

(9,8,11) (8,9,8) ∞ (8,10,10) (9,7,11) (10,9,8) (11,9,9) (10,9,10) (8,8,8) (9,8,10)

(9,118,11) (8,9,8) ∞ (8,10,10) (9,7,11) (10,9,8) (11, 119,9) (10,9,10) (8,8,8) (9,8,10)

(.32,.30,.27) (.22,.26,.28) ∞ (.32,.36,.39) (.27,.26,.23) (.37,.39,.41) (.11,.16,.15) (.34,.38,.35) (.42,.44,.47) (.32,.37,.34)

(.9,.8,.11) (.8,.9,.8) ∞ (.8,.10,.10) (.9,.7,.11) (10,.9,.8) (.11,.9,.9) (.10,.9,.10) (.8,.8,.8) (.9,.8,.10)

4 (37,34,32) (30,26,31) (32,36,39) ∞ (22,26,28) (27,26,28) (32,36,35) (37,36,40) (24,26,22) (39,36,34)

(8,9,10) (9,10,11) (8,10,10) ∞ (9,8,10) (7,9,9) (8,10,9) (9,9,10) (8,9,10) (9,8,9)

(8,0,10) (9,10,11) (8,10,10) ∞ (9,8,10) (7,9,9) (8,10,9) (0,119,10) (0,0,0) (9,8,9)

(.37,.34,.32) (.30,.26,.31) (.32,.36,.39) ∞ (.22,.26,.28) (.27,.26,.28) (.32,.36,.35) (.37,.36,.40) (.24,.26,.22) (.39,.36,.34)

(.8,.9,.10) (.9,.10,.11) (.8,.10,.10) ∞ (.9,.8,.10) (.7,.9,.9) (.8,.10,.9) (.9,.9,.10) (.8,.9,.10) (.9,.8,.9)

5 (18,26,21) (37,36,38) (27,26,23) (22,26,28) ∞ (22,26,24) (23,26,28) (32,36,38) (16,16,18) (30,36,31)

(9,7,11) (8,9,10) (9,7,11) (9,8,10) ∞ (10,9,10) (9,8,7) (9,10,8) (7,9,9) (8,10,9)

(9,0,11) (8,9,10) (9,7,11) (9,8,10) ∞ (10,9,10) (9,0,7) (9,10,8) (7,112,9) (8,10,9)

(.18,.26,.21) (.37,.36,.38) (.27,.26,.23) (.22,.26,.28) ∞ (.22,.26,.24) (.23,.26,.28) (.32,.36,.38) (.16,.16,.18) (.30,.36,.31)

(.9,.7,.11) (.8,.9,.10) (.9,.7,.11) (.9,.8,.10) ∞ (.10,.9,.10) (.9,.8,.7) (.9,.10,.8) (.7,.9,.9) (.8,.10,.9)

6 (18,16,14) (48,46,43) (37,39,41) (27,26,28) (22,26,24) ∞ (34,36,38) (42,46,47) (34,36,38) (32,36,30)

(8,9,10) (7,9,10) (10,9,8) (7,9,9) (10,9,10) ∞ (7,8,8) (9,9,11) (10,9,8) (8,9,9)

(8,9,110) (7,119,10) (0,0,8) (7,9,0) (10,9,10) ∞ (7,8,8) (0,0,0) (10,9,8) (8,9,9)

(.18,.16,.14) (.48,.46,.43) (.37,.39,.41) (.27,.26,.28) (.22,.26,.24) ∞ (.34,.36,.38) (.42,.46,.47) (.34,.36,.38) (.32,.36,.30)

(.8,.9,.10) (.7,.9,.10) (.10,.9,.8) (.7,.9,.9) (.10,.9,.10) ∞ (.7,.8,.8) (.9,.9,.11) (.10,.9,.8) (.8,.9,.9)

7 (37,40,35) (32,36,33) (11,16,15) (32,36,35) (23,26,28) (34,36,38) ∞ (12,16,13) (34,36,32) (22,26,20)

(11,9,8) (11,10,9) (11,9,9) (8,10,9) (9,8,7) (7,8,8) ∞ (8,9,8) (10,10,9) (11,9,8)

(11,110,8) (0,10,9) (111,9,9) (8,10,9) (9,0,7) (7,8,8) ∞ (8,9,8) (10,10,9) (11,0,8)

(.37,.40,.35) (.32,.36,.33) (.11,.16,.15) (.32,.36,.35) (.23,.26,.28) (.34,.36,.38) ∞ (.12,.16,.13) (.34,.36,.32) (.22,.26,.20)

(.11,.9,.8) (.11,.10,.9) (.11,.9,.9) (.8,.10,.9) (.9,.8,.7) (.7,.8,.8) ∞ (.8,.9,.8) (.10,.10,.9) (.11,.9,.8)

8 (39,35,32) (44,46,47) (34,38,35) (37,36,40) (32,36,38) (42,46,47) (12,16,13) ∞ (24,26,25) (39,36,42)

(9,8,11) (8,9,8) (10,9,10) (9,9,10) (9,10,8) (9,9,11) (8,9,8) ∞ (9,8,10) (10,9,11)

(9,0,0) (0,0,118) (10,9,10) (9,9,10) (0,10,8) (9,9,11) (8,9,8) ∞ (9,8,10) (10,9,11)

(.39,.35,.32) (.44,.46,.47) (.34,.38,.35) (.37,.36,.40) (.32,.36,.38) (.42,.46,.47) (.12,.16,.13) ∞ (.24,.26,.25) (.39,.36,.42)

(.9,.8,.11) (.8,.9,.8) (.10,.9,.10) (.9,.9,.10) (.9,.10,.8) (.9,.9,.11) (.8,.9,.8) ∞ (.9,.8,.10) (.10,.9,.11)

9 (42,47,44) (30,26,25) (42,44,47) (24,26,22) (16,16,16) (34,36,38) (34,36,32) (24,26,25) ∞ (30,26,25)

(7,9,11) (7,10,8) (8,8,8) (8,9,10) (7,9,9) (10,9,8) (10,10,9) (9,8,10) ∞ (9,11,10)

(7,9,11) (7,10,8) (8,8,8) (8,0,10) (7,9,9) (10,9,8) (10,10,9) (9,8,10) ∞ (9,11,10)

(.42,.47,.44) (.30,.26,.25) (.42,.44,.47) (.24,.26,.22) (.16,.16,.16) (.34,.36,.38) (.34,.36,.32) (.24,.26,.25) ∞ (.30,.26,.25)

(.7,.9,.11) (.7,.10,.8) (.8,.8,.8) (.8,.9,.10) (.7,.9,.9) (.10,.9,.8) (.10,.10,.9) (.9,.8,.10) ∞ (.9,.11,.10)

10 (41,29,26) (16,15,17) (32,37,34) (39,36,34) (30,36,31) (32,36,30) (22,26,20) (39,36,42) (30,26,25) ∞
(9,10,7) (11,10,9) (9,8,10) (9,8,9) (8,10,9) (8,9,9) (11,9,8) (10,9,11) (9,11,10) ∞
(9,10,7) (11,10,9) (119,0,10) (9,8,9) (8,10,9) (0,9,9) (111,9,8) (110,9,11) (9,111,10) ∞

(.41,.29,.26) (.16,.15,.17) (.32,.37,.34) (.39,.36,.34) (.30,.36,.31) (.32,.36,.30) (.22,.26,.20) (.39,.36,.42) (.30,.26,.25) ∞
(.9,.10,.7) (.11,.10,.9) (.9,.8,.10) (.9,.8,.9) (.8,.10,.9) (.8,.9,.9) (.11,.9,.8) (.10,.9,.11) (.9,.11,.10) ∞
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