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Distribution utilities incur heavy penalties when the grid utilization exceeds the
permitted demand levels. This is in turn translates into higher tariffs and cus-
tomer bills, reduced customer satisfaction and adverse impacts on social welfare.
To achieve energy balance, load shedding becomes inevitable under circumstances
when the demand on grid exceeds permitted levels. The advent of smart distribu-
tion systems has made possible accurate, distributed load control approach instead
of bulk load shedding. Small amounts of acceptable load sheds than larger tariffs
improve household social welfare in poorer economies. In this paper a novel load
control approach has been proposed using the recent variant of Teaching Learning
Based Optimization (TLBO) algorithm, called Adaptive Inertia Weight Teaching-
Learning-Based Optimization (ATLBO) which uses an adaptive inertia weight strat-
egy. The method has been tested on the IEEE 33 bus test system and has yielded
exceptional results in terms of energy balance, reduced losses and reduced penal-
ties for power overdraw from grid. Penalties to be paid by utilities can percolate
into increased energy costs for the customers, affecting social welfare. The perfor-
mance of the approach has been compared with the performance of PSO, CSA and
basic TLBO in finding efficient solutions to the load control problem.
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1 Introduction 

Deficiencies in generation can lead to drop in power system frequency and voltage collapse. Load shed-

ding becomes the only feasible solution in such emergency situations. Conventional load shedding 

strategies involved the shedding of pre-decided bulk loads when the system passed through decided 

frequency thresholds. This leads to excess or lesser load sheds. As distribution systems became smart-

er, the possibility to shed optimally calculated loads at optimal locations became a possibility. With 

restructuring initiations in the power industry [1], customer participation in demand side management 

[2] and demand side programs [3], load shedding, without compromising customer satisfaction be-

came relevant. Demand for power varies based on hour of the day, season, changes in climate, and a 

host of other factors. Utilities deal with changed demands in different ways. During peak periods, utili-

ties may use peaker plants which are carbon intensive and expensive to install and operate. But with 

the large acceptance of demand side management and the implementation of smart grids, utilities are 

now better able to manage the short term energy situation crisis without compromising on the reliabil-

ity expectations of customers. This requires the calculation of optimal amounts of load shed and the 

best locations for load shed ensuring voltage stability and frequency stability of the system. The emer-

gence of smart grids has given rise to selective and accurate load sheds. Accurate and selective load 

sheds makes feasible brown outs instead of black outs. Distribution companies (DisCos) purchase pow-

er from system operators and are liable to pay penalty if the demand exceeds the contracted power. 

This in turn percolates to higher customer bills, and customer dissatisfaction. With selective sheds Dis-

Cos can curtail less priority loads during peak demand periods if the demand exceeds the contracted 

demand from grid.  

Towards determination of optimal amounts and locations of load sheds, Meta heuristic algorithms have 

found wide acceptance in literature. The study in [4] demonstrates the use of GA in minimizing the 

sum of curtailed load and losses to determine optimal load shed. This was demonstrated by the authors 

with and without the use of Distributed Generation sources (DGs) in the system. GA has also been used 

in [5] to implement a load shedding method to provide voltage stability with and without DG when 

demand exceeds generation. Application of Bacterial Foraging Algorithm optimization application to 

determine the best load shedding method with the goal of minimizing total power losses, voltage stabil-

ity index value, and total load shed cost can be seen in [6]. The authors in [7] have used an optimal load 

shedding algorithm which was implemented in two parts. The first part identifies the buses for load 

shed based on the sensitivity of minimum eigenvalues of load flow Jacobian with respect to load shed. 

The second part determines the amount of load shed using differential evolution. In [8] an optimal load 

shedding scheme has been proposed to balance the electricity demand and the generated power of DGs 

with a hybrid of Firefly algorithm and PSO. Artificial Bee Colony (ABC) algorithm is applied to a re-

newable energy populated islanded micro grid in [9]. Load shedding considering priorities for loads 

aimed to minimize the square of difference between available power and demand has been proposed in 

[10].  Though many solutions with heuristic algorithms have been proposed in literature, the research 

field is still open to try recent and more efficient algorithms to the problem for efficient solutions. The 

Teaching Learning Optimization (TLBO) algorithm was introduced by Rao et al in [11]. The algorithm’s 

computational ease stems from the fact that it does not depend on the tuning of any algorithm specific 

parameters unlike the swam based and evolutionary algorithms.  TLBO has been competently used in 

solving power system problems [12]. Many improved versions of TLBO have been proposed and a com-

prehensive survey of the different variants can be found in [13]. The Adaptive Inertia Weight TLBO 

(ATLBO) introduces adaptive exponential distribution inertia weight for updating the position vector 

(AEDIW) and has shown its superiority over other existing inertia weight basic TLBO variants [14].   
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This paper proposes a novel method using ATLBO algorithm to determine accurate load shedding 

amounts and locations to nullify grid imposed penalties for peak load demands exceeding contracted 

demands from grid. The method is based on ATLBO algorithm and backward forward load flow method 

[15]. 

2 Problem Formulation 

The primary objective of any type of power system is to obtain energy equilibrium at all times. By load 

shedding the utilities strive to achieve this objective. Therefore the objective function is formulated as 

in (1) 

𝑂𝐹 = 𝑚𝑖𝑛[𝑃𝐺 − {(1 − 𝛽𝑖) × 𝑃𝑑𝑖} + 𝑃𝑙𝑜𝑠𝑠] (1) 

where, PG is the contracted power from the grid by the utility, βi is the fraction of load shed at every bus, 

Pdi is the peak load at each bus and Ploss is the total distribution loss in the system. 

2.1 Constraints 

The voltage and current should be maintained within limits as given by (2) and (3). The permitted de-

mand level from the grid at each hour is limited by βi as in (4). 

|𝑉𝑖,𝑚𝑖𝑛| < |𝑉𝑖| < |𝑉𝑖,𝑚𝑎𝑥|                 ∀{𝑖 = 1,2, … 𝑛𝑏} (2) 

𝐼𝑗,𝑚𝑖𝑛 < 𝐼𝑗 < 𝐼𝑗,𝑚𝑎𝑥∀𝑗{𝑗 = 1,2, … 𝑛𝑏𝑟}                                                                           (3) 

𝛽𝑖 < 𝛽𝑖,𝑚𝑎𝑥∀𝑖{𝑖 = 1,2, … 𝑛𝑏}                                                                                         (4) 

3 Adaptive Inertia Weight Teaching Learning Based 

Optimization  (ATLBO) Algorithm 

ATLBO is a recent variant of the TLBO algorithm. A description of basic TLBO is given in this session 

along with the improvement in ATLBO. 

3.1 TLBO Algorithm 

TLBO algorithm which was introduced by Rao et al in 2011 has the advantage of the non usage of any 

algorithm specific parameters unlike in the case of popular swarm based and evolutionary algorithms. 

Low computational burden and less memory rate are also plus points of the basic TLBO algorithm. 

Students learn in the TLBO algorithm in two ways: (i) from an instructor and (ii) from their classmates. 

The first mode is known as the teacher phase, while the second is known as the learner phase, and they 

both replicate the optimization process' exploration and exploitation stages respectively. In the teacher 

phase the teacher is considered as the best learner and tries to bring the learner’s performance to 

match his performance using (5). 

𝑋𝑗,𝑘
′ = 𝑋𝑗,𝑘 + 𝑟𝑖(𝑋𝑗,𝑘𝑏𝑒𝑠𝑡 − 𝑇𝐹𝑀𝑗)  (5) 

where,  𝑋𝑗,𝑘
′  is modified student performance , TFis teaching factor and ri is a random number between 0 

and 1 and Mj, the mean value. In the learner phase peer learning is encouraged to increase learner’s 

knowledge using (6) and (7). 

𝑋𝑗,𝑚
′ = 𝑋𝑗,𝑚 + 𝑟𝑖(𝑋𝑗,𝑚 − 𝑋𝑗,𝑛)  (6) 
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if m th learner’s performance is better than n th learner’s performance, else if n th learner’s performance is 

better than m th learner’s performance 

𝑋𝑗,𝑛
′ = 𝑋𝑗,𝑛 + 𝑟𝑖(𝑋𝑗,𝑛 − 𝑋𝑗,𝑚)  (7) 

TLBO has been successfully used to solve optimization problems [16].  But every optimization algo-

rithm is open to scope for improvement and inertia has been found to be a crucial measure to control 

the exploration and exploitation by preserving a balance in their capabilities. ATLBO uses an adaptive 

inertia weight strategy.  It monitors the search situation and adapts the inertia weight value based on 

one or more feedback parameters. The three aspects introduced in ATLBO are chaos-based initializa-

tion, new inertia weight strategy and position-updating equation. 

3.2 ATLBO Algorithm 

The computational efficiency of any heuristic algorithm is mainly dependent on generation of its initial 

population and it plays a key role in ATLBO also. Logistic-map, a chaos based method, is employed for 

initialization of random population, because it can map the present population value at any time step to 

its value at the next time step. It is given by the equation as in (8). 

𝑥𝑡+1 = 𝑟. 𝑥𝑡(1 − 𝑥𝑡)  (8) 

where xt denotes the tth chaotic variable, generated for a set of specific periodic static points (0, 0.25, 

0.5, 0.75 and 1); r represents the growth rate or bifurcation coefficient by a fixed continuous set of 4. 

The adaptive exponential distribution inertia weight (AEDIW) is suggested to improve the efficiency of 

solution and convergence rate. Equations (9) to (11) represent the inertia weight calculation. 

𝜔 = −𝜌1𝑒−𝜌𝜆 + 𝜌2𝑒𝜌𝜆, 𝐿𝑏 < 𝑈𝑏  (9) 

𝜌1 = 𝜔2𝑒−𝜆 + 𝜔1𝑒𝜆  (10) 

𝜌2 = −𝜔1𝑒2𝜆 + 𝜔2   (11) 

where ω1 and ω2 are positive real numbers. In contrast to simple TLBO, this inertia weight is employed 

to update the position of all students at once, and so equation (5) is modified as in (12). The value of ρ 

is the parameter of the distribution in TLBO algorithm in the range of [Lb,Ub] for each learner.  

𝑋𝑗,𝑘
′ = 𝜔 × 𝑋𝑗,𝑘 + 𝑟𝑖(𝑋𝑗,𝑘𝑏𝑒𝑠𝑡 − 𝑇𝐹𝑀𝑗)  (12) 

The steps involved in ATLBO algorithm has been represented using a flowchart in Fig. 1. 

4 Results and Discussions 

The proposed approach has been tested on IEEE 33 bus system with a total connected load of 3715 kW 

+ j 2300 kVAR. The contingency considered here is the overload situation where the system draws 

more than the contracted power from the grid. The hourly contracted demand from grid is represented 

as a fraction of the total connected load in Fig 2. The distribution system’s net effective demand on the 

main grid, including losses, is calculated as (3925.99 kW + j 2443.03 kVAR), and it is used as the peak 

demand (load + losses) in further calculations. Total distribution losses are (210.998 + j 143.033) kW, 

with bus-18 experiencing the lowest voltage magnitude of 0.9038 per unit (pu). The results have been 

presented without and with implementation of load control. Without load control the system draws 

more power than permitted level from the grid. With the hourly permitted level as in Fig. 3, the addi-

tional power from grid has been calculated as the difference between hourly permitted and the actual 

power drawn from grid (ie, permitted demand plus losses). The mismatch in the case without optimal 
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load control (OLC) amounts to the losses and is negative since the drawn power is greater than the 

sanctioned power. Fig 4 represents this. With OLC it has been possible to reduce this error to a negligi-

ble value. The mismatch with OLC is represented in Fig. 5.  

The penalty prices are assumed as 0.25 $/h for hours 0 to 8, 0.5 $/h for hours 9 to16, and 0.75 $/h for 

hours 17 to 23, respectively. The hourly penalty to be paid by the DisCo for additional power drawn 

from grid is presented in Fig 5.With OLC, this penalty has been nullified. The total load curtailment in 

kW with implementation of OLC is as in Fig 6. The maximum load shed happens for the peak hours 18 
th and 19 th hour. The load shed at each bus is represented during these hours in Fig 7. The maximum 

load shed happens at bus no. 24 and 25. The amount of load shed is distributed across the feeders in-

stead of bulk load sheds and any excess or less load sheds are avoided. By optimal load control shed-

ding at each bus, the load demand is made as close as possible to the available demand. This shows the 

effectiveness of the ATLBO method. The active and reactive power demand on the grid before and after 

implementing load control and comparison with the contracted demand is presented in Fig. 8 and Fig. 

9. With load shed the losses reduce which contributes to reduction in power drawn from the grid. The 

losses are shown in Fig. 10. The voltage profile is maintained with the minimum voltage above 0.9 pu 

as in Fig. 11. 

 
 

Fig. 1. Flowchart of ATLBO Algorithm 
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Fig. 2. Hourly permitted demand from grid 

 

Fig 3. Power mismatch without load control 

 

 
Fig.4. Power Mismatch with Load Control 

 

-1
5

5
.1

8

-1
4

9
.5

-1
4

3
.9

-1
4

1
.3

8

-1
4

1
.3

8

-1
5

2
.1

4

-1
6

3
.7

4

-1
7

8
.7

2

-1
8

1
.6

4

-1
8

3
.3

3

-1
8

5
.0

2

-1
8

1
.6

4

-1
7

2
.5

6

-1
6

9
.7

2

-1
7

0
.9

3

-1
7

2
.5

6

-1
7

4
.1

9

-1
7

5
.8

3

-2
1

1

-2
1

1

-1
9

4
.4

7

-1
7

2
.5

6

-1
6

3
.7

4

-1
5

5
.1

8

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

M
IS

M
A

TC
H

 (K
W

)

HOUR

MISMATCH WITHOUT OLC

1
.6

8

0
.6

1

2
.2

4

1
.0

9

1
.0

9

0
.5

9

0
.7

1

0
.7

4 0
.9

6

0
.9

4

2
.1

5

1
.1

7

0
.7

9

1
.6

0
.6

0
.9

8

0
.9

2

0
.9

1 1
.1

2

1
.1

2

1
.9

5

0
.7

9

0
.8

1
.3

1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

M
IS

M
A

TC
H

 (K
W

)

HOUR

MISMATCH(WITH OLC)

Mismatch(With OLC)

Nirmala John, Varaprasad Janamala, Joseph Rodrigues

410



6 

 
 

Fig. 5. Penalty to be paid by the distribution utility with and without OLC 

 

 Fig. 6. Hourly load shed (kW) with OLC 

 

Fig. 7. Peak hour load shed (kW) 
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Fig. 8. Active Power (kW) demand from grid 

As a comparative performance analysis with other algorithms, the performance of ATLBO is compared 

with Particle Swarm Optimization (PSO), Butterfly Optimization Algorithm (BOA) and basic TLBO. 

The control parameters for the ATLBO algorithm have been detailed in [14]. The control parameters for 

the compared algorithms are as listed in [16]. For the comparison, a permitted power demand factor of 

0.85 is chosen. The results obtained by different algorithms are given in Table 1. The results show the 

superior performance of ATLBO with least mismatch.   

Table 1. Comparative performance with other algorithms 

 
Fig 9. Reactive Power (kVar) Demand from grid 

Method Mismatch(kW) 
Power drawn 

from grid(kW) 

Power drawn 

from grid(kVar) 

Loss-

es(kW) 

Vmin (pu)@

bus 18 

Before 

OLC 
-148.75 3306.5 3157.75 148.75 0.9193 

PSO 0.6 3157.15 3024.77 132.38 0.9239 

BOA 0.24 3157.51 3019.94 137.57 0.9227 

TLBO 0.21 3157.54 3020.67 136.87 0.9228 

ATLBO 0.16 3157.59 3021.91 135.68 0.9226 
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Fig. 10. System losses (kW) before and after OLC implementation 

 

Fig.11. Bus Voltage profile with OLC 

5 Conclusion 

In this study, a novel optimization approach for achieving energy balance in a distribution system has 

been proposed using the ATLBO algorithm, which uses an adaptive exponential distribution inertia 

weight (AEDIW)for updating the position vector towards achieving global optima. The method has 

been able to nullify penalties to be paid by the distribution utilities for exceeding permitted power utili-

zation from the grid. Simulations run on the IEEE 33 bus test system has produced excellent results in 

achieving the energy balance when load demand exceeds sanctioned demands. The results have 

achieved zero penalties which otherwise would have percolated to the customers bills reducing custom-

er satisfaction and adversely affecting social welfare. The effectiveness of ATLBO has been compared 

with PSO, CSA and basic TLBO for solving the energy balance problem and the finding demonstrates 

the superior performance of ATLBO. 

References 

[1] Lai, Loi Lei. (2001). Power system restructuring and deregulation: trading, performance and information 

technology. John Wiley & Sons. 

[2] Meyabadi, Fattahi, A. and Deihimi, M. H. (2017). A review of demand- side management: Reconsidering the-

oretical framework. Renewable and Sustainable Energy Reviews, 80: 367-379. 

New Frontiers in Communication and Intelligent Systems

413



9 

[3] Siano and Pierluigi (2014). Demand response and smart grids—A survey. Renewable and sustainable energy 

reviews, 30: 461-478. 

[4] Malekpour A. R. et al. (2008). An optimal load shedding approach for distribution networks with DGs con-

sidering capacity deficiency modelling of bulked power supply. In Australasian universities power engineer-

ing conference, 1–7. 

[5] Moradi, M. H. and Abedini, M. (2010). Optimal load shedding approach in distribution systems for improved 

voltage stability. In 4th International Power Engineering and Optimization Conference, 196-200. 

[6] Wnea, A., Tka, R. and Zakaria, Z. (2013). Bacterial foraging optimization algorithm for load shedding. In the 

7th international power engineering and optimization conference, 722–726. 

[7] Arya, L. D., Singh, P. and Titare, L. S. (2012). Differential evolution applied for anticipatory load shedding 

with voltage stability considerations, International Journal of Electrical Power & Energy Systems, 42(1): 

644-652. 

[8] Jallad, J. et al. (2018). Application of Hybrid Meta-Heuristic Techniques for Optimal Load Shedding Plan-

ning and Operation in an Islanded Distribution Network Integrated with Distributed Generation. Energies, 

11(5): 1134. 

[9] Mogaka, L. O., Nyakoe, G. N. and Saulo, M. J. (2020). Power Prioritization and Load Shedding in an Island 

with RESs using ABC  Algorithm. Journal of Engineering, 2020(22): 1-10. 

[10]Mageshvaran, R. and Jayabarathi, T. (2015). Steady state load shedding to mitigate blackout in power sys-

tems using an improved harmony search algorithm. Ain Shams Engineering Journal, 6(3): 722–726. 

[11] Rao R. V., Savsani V. J. and Vakharia D. P. (2011). Teaching-learning based optimization: a novel method for 

constrained mechanical design optimization problems. Comput- Aided Design, 43(3): 303-315. 

[12] Mohanty, B. and Tripathy, S. (2016). A teaching learning based optimization technique for optimal location 

and size of DG in distribution network. Journal of Electrical Systems and Information Technology, 3(1): 33-

44. 

[13] Feng, Z. et al. (2019).  A survey of teaching–learning- based optimization. Neurocomputing, 335 : 366-383. 

[14] Shukla, A. K. et al. (2020). An adaptive inertia weight teachinglearning-based optimization algorithm and its 

applications. Applied Mathematical Modelling, 77 (1): 309-326.  

[15] Haque, M. H. (1996). Efficient load flow method for distribution systems with radial or mesh configuration. 

IET Proc. On Generation, Transmission and Distribution, 143(1): 33-38. 

[16] Zhang et al. (2020). A Chaotic Hybrid Butterfly Optimization Algorithm with Particle Swarm Optimization 

for High-Dimensional Optimization Problems. Symmetry, 12(11): 1800. 

  

 

Nirmala John, Varaprasad Janamala, Joseph Rodrigues

414


