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Bluetooth, MMS, SMS, e-mail, and other mobile-specific applications may consti-
tute deliberate threats, resulting in financial losses as well as the revealing of sen-
sitive user data. To circumvent this, different approaches have lately been applied,
such as static analysis-based detection or dynamic analysis-based detection. How-
ever, some of these strategies have become saturated as a result of massive increase
in malware code authoring techniques. As a result, there is a need for an effective
android privacy-leakage vulnerability detection technique, for which this research
used hybrid features such as standard permissions, non-standard permissions, sys-
tem call traces, and network traffic to conduct experimental tests. We presented a
method to prioritize the attributes in order to select the most prominent features,
with the purpose ofminimizing the number of attributes to be investigatedwhile re-
taining good detection accuracy. To rank the attributes in this dimension, we used
a variety of statistical approaches. The findings of the experiments reveal that se-
lecting attributes for vulnerability detection resulted in higher detection accuracy
than assessing Accuracy using all attributes. To assess the efficacy of the suggested
attribute selection procedure, we deployed a neural network. With the prominent
attributes chosen by the proposed algorithm, the neural network attained an accu-
racy of 96.41 percent, which is 2% higher than the accuracy we achieved with all
of the attributes combined.
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1 Introduction 

Android vulnerability, also known as Android vulnerable application, is always developed with the intent 

of stealing sensitive information from users or harming Android devices. Since 2012, Android has 

remained the leading operating system [1]. Android's market share was 84.1 percent in 2020, and it is 

expected to increase to 84.9 percent by 2025 [2]. Mobile devices are now used for more than just sending 

messages or dialing numbers; they are also used for gaming, downloading files, social networking, 

chatting, web browsing, online shopping, and online financial transactions. Mobile users store sensitive 

data in their devices, such as bank account numbers, contacts, usernames and passwords for online 

banking, and credit card numbers. Because Android is an open-source operating system, many 

contributors are contributing to its development in order to improve the graphical interfaces and 

optimize the performance. In order to gain more popularity, a large number of refined versions are being 

offered to mobile device users, and their evaluations will allow it to become more dominant and 

convenient. Nonetheless, this has caught the interest of many vulnerable code writers in gaining 

unsigned access to the user's sensitive information. 

There are a lot of Android apps that are susceptible. In order to avoid malware penetration, Google 

provides the Bouncer [3] technique to detect dangerous Android applications during the application 

submission process. However, malware that loads its malicious content during the runtime cannot be 

identified by Google's Android malware detection approach during installation, thus a variety of 

approaches have lately been utilized to limit this, including static and dynamic analysis-based 

detection. Because static analysis-based detection has limits, such as malware that uses obfuscation, 

encryption, or the use of runtime libraries going undetected, we employed dynamic analysis in our 

research. As a result, a proper approach to identifying Android malware is required, which is addressed 

in this work by experimental tests with hybrid features such as normal permissions, non-standard 

permissions, network traffic, and system call tracing. The exceptional attributes are selected using a 

novel technique introduced in this work. The proposed framework was created using neural network 

algorithms and is based on the concept of feature selection techniques. To find the optimum attributes 

for training, we applied two different approaches: attribute ranking and attribute subset selection. Gain- 

Ratio [4], OneR [4], Information Gain [5], and Chi-Squared Test [5] are four distinct attribute ranking 

methodologies we look at in this research to find the top attributes. In addition, we examine CFS Subset 

Evaluation [6] and Filtered Subset Evaluation [7], two unique attribute subset selection algorithms. We 

used neural network algorithms to train them once we chose the best trait. 

By collecting data from the emulator, we attempted to evaluate the network traffic behavior of android 

malware in this study. By integrating network traffic attributes with permission and system call traces, 

as well as utilizing them alone, we evaluated the impact of network traffic attributes in the discovery of 

vulnerabilities. Initially, we used feature selection algorithms to train our model by selecting attributes. 

Furthermore, the permissions, network traffic attributes, and system calls have been prioritized such 

that only a subset of the whole attribute set can be used for vulnerability identification. The advantage 

of this type of attribute prioritization is that it allows for the decrease of attributes that may cause 

detection problems. The outcomes of this study, which used statistical techniques to rank attributes 

and locate subsets of traits, were not particularly noteworthy. 

Below is a summary of the remainder of the paper. Previous research on Android malware detection is 

discussed in Section 2. Section 3 describes the technique employed in this study. The performance of 

the suggested method is discussed in Section 4. 
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2 Related Work 

According to a recent literature review, there are several approaches available to detect vulnerability in 

Android applications. Some have used signature-based detection methods, but their main limitation is 

that they can only detect known malwares whose signatures are present in the repository. Because 

signature-based approaches have limitations, many tactics, such as static and dynamic analysis, have 

emerged to detect malicious Android applications [8-11]. 

Static analysis has been used by many authors. The majority of existing static analysis-based android 

malware detection techniques make use of permissions and API-calls as features, with a few others 

making use of intents, metadata information, row op-codes, and so on. As a result, we chose permission 

as the static attribute out of all the attributes in this work. Sahal [12] proposed a permission-based 

Android malware detection technique. To select features, the TF-IDF-CF weighting method is used. 

They compared TF-IDF-CF to Information Gain and PCA and found that TF-IDF-CF outperformed the 

others. They tested the effectiveness of feature selection methods such as J48, Naive Bayes, SVM, and 

KNN and found that SVM achieved 98.6 percent accuracy. 

Jung [13], proposed an Android malware detection system based on API-call features, and they 

identified a subset of Android APIs that are effective as features. They have created two top-ranked lists: 

one for the top API calls used by benign samples and another for the top API calls used by malicious 

samples. According to their observations, the APIs in the benign list is quite different from the APIs in 

the malicious list. They used a random forest classifier and achieved a 99.98 percent accuracy. 

In the past, many writers have employed a combination of static analysis features to detect malware. 

Standard permissions, non-standard permissions, and API call features were used to create various 

feature sets such as API calls with standard permissions, API calls with non-standard permissions, and 

API calls with both standard and non-standard permissions. Singh [3] focused on static analysis by 

considering standard permissions, non-standard permissions, and API call features, which were used to 

create various feature sets such as API calls with standard permissions, API calls with non-standard 

permissions, and API calls with standard and non-standard permissions. They chose the top 

characteristics using four techniques: BI-Normal Separation, Mutual Information, Relevancy Score, 

and the kullback-Leibler method. They employed a linear support vector machine classifier to assess 

the performance. According to their findings, the combined features set indicated by the BI- Normal 

Separation technique had the maximum accuracy of 99.6%. 

Only a few authors have employed dynamic analysis. System call traces, network traffic, control flow 

graphs, and other data are used in existing dynamic analysis research. In this study, we used system call 

and network traffic occurrences as attributes. Aminuddin [14] presented an Android malware detection 

mechanism based on dynamic analysis of system calls. They attained an accuracy of 81.2 percent using 

the random forest technique. [15] Radoglou-Grammatikis demonstrated an intrusion detection method 

for identifying aberrant behavior in Android mobile devices. They used network traffic and an artificial 

neural network as a classifier as a feature. 

Some of the authors have presented ways that take both static and dynamic analysis into account. The 

extent to which adversarial attacks can degrade classifier performance was examined by Anupama [16]. 

They proposed a system built on static and dynamic properties learned using machine learning and 

deep neural networks. The researchers discovered that integrating static and dynamic features 

enhances accuracy. They achieved 100 percent accuracy using CART and SVM for hybrid features, 

97.59 percent accuracy using SVM for static features, and 95.64 percent accuracy using Random Forest 

for dynamic features. They achieved 99.28% accuracy with static features, 94.61 percent accuracy with 

dynamic features, and 99.59 percent accuracy with hybrid features and deep neural networks. They 
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assessed the classifier's resistance to evasion and poisoning attacks. 

Afonso et al [17] propose another Android malware detection system that combines static and dynamic 

features such as API calls and system call traces with machine learning to detect malware with a high 

detection rate. Yerima [18] presented a longitudinal study of machine learning classifier performance 

for android malware detection. They extracted features from applications that were first seen between 

2012 and 2016. When tested on sets of samples from a later time period, the experimental results of 

their study show progressive diminishing performance. When older models were tested on newer app 

samples, they discovered that misclassification of benign samples as malicious increased significantly 

more than the fall in correct classification of malicious apps. 

Yang [19] proposed a CNN-based malware detection approach based on images. They took Dalvik 

Bytecode as a feature and converted it to image. The transformed images are then fed into CNN for 

malware detection. According to the results of the experiment, they achieved an accuracy of 93 percent. 

By considering previous approaches for android vulnerability detection, an experimental study was 

conducted to compare the method's evaluation with other existing methods in Table 1. A summary is 

provided below. 

 Using dynamic analysis, standard and non-standard permissions were extracted from the 

manifest file, system call traces and network traffic were recorded, and Java code was written to 

support this. These permission sets are then combined with system calls and network traffic to 

create a combined attribute set. Non-standard permissions are declared by application 

developers, whereas standard permissions are predefined in the authoritative android library. 

 An algorithm is proposed in section 3.1 to select the nominal set of attributes. 

 
Table 1. Comparison of proposed approach with existing approach 

 

Method Attributes Attribute Selection 

Techniques 
Accuracy (%) 

Our Approach Permissions + System Calls + Proposed 96.41% 
 Network Traffic Approach  

Shahzad, R. K. Permissions + Intents + Hardware Not Mentioned 94% 

[20] Components   

Alshahrani, H System Calls + System Information + Not Mentioned 95% 

[21] Network Traffic + Requested   

 Permission   

Afonso, V. M. API Calls + System Calls Not Mentioned 95.66% 

  [17]  

3 Proposed Methodology 

Figure 1 depicts the proposed operation flow diagram, in which dynamic analysis is used to detect 

android vulnerabilities. Static analysis was used because recent malwares are vulnerable to code 

obfuscation, encryption, and the use of runtime libraries. So, in order to overcome the limitations of 

static analysis, dynamic analysis is proposed in this work. Static analysis does not necessitate the 

execution of an application, whereas dynamic analysis necessitates the execution of an application, 

which takes significantly longer than static analysis but allows for the observation of the application's 

runtime behavior. The first step in dynamic analysis is to select a dataset that contains a uniform 

distribution of benign and malicious applications. To extract attributes from an Android application, an 
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independently developed monitoring component is installed in the device, and that monitoring 

component is responsible for capturing network traffic, system calls, and permissions requested by the 

application. Section 3.1 discusses the attribute selection algorithm, which is proposed to select 

distinguishable attributes. These characteristics were combined to create training data for the neural 

network. Our dataset contains total of 329 attributes. For example, the average packet size in normal 

apps is 1-2515, while it is 1-18143 in vulnerable apps. Normal and vulnerable apps share the same 

permissions and system calls. There is no distinguishable attribute set because attributes and ranges 

overlap in both types of apps. As there is no such distinguishing attribute, determining a nominal set of 

attributes that improves detection accuracy is the most difficult task. The attributes should be ranked in 

order to distinguish the best subset of attributes. We used various feature selection and ranking 

algorithms to rank the attributes, which resulted in higher detection accuracy. To rank the attributes, 

we used various feature ranking algorithms such as Information Gain, Gain Ratio, OneR, and 

correlation. In addition, we used subset selection algorithms like CFSSubset and FIlteredSubset. 

 

Fig. 1. Proposed Operational Flow Diagram 

To perform dynamic analysis of benign and vulnerable applications, a Google Nexus 4 emulator 

running Android version 4.4 is used. As a result of dynamic analysis, the tracking component installed 

in the emulator will record the permission, system calls, and network traffic generated by each of the 

applications. Each sample will run in the emulator for 20 minutes. There are a total of 2008 samples 

used for training and 502 samples used for testing. The monitoring component will capture network 

traffic in .pcap format, which can be easily analyzed with the Wireshark tool. Each system call trace, 

permission, and network traffic file is sent to a desktop computer running Windows 10 with 8 GB RAM 

and a 256 GB SSD for further analysis. The attribute selection algorithm proposed in this paper is 

discussed in the following subsection. 

3.1 Selection of Attributes 

The selection of relevant attributes among the ranked attributes is obtained through CHI tests, I.G., 

G.R., OneR, correlation, and subset features obtained through CFS subset, Filtered Subset, and are 

presented in algorithm 1. We will have seven various rankings of attributes obtained from mentioned 

algorithms. As input, seven different ranking algorithms are used to compute the nominal set of top- 

ranked attributes from all seven rankings. We want to prioritize the attributes so that only a few of them 

are used for vulnerability detection rather than the entire set of 329 attributes. I made three lists: the 

Primary List (Plist), the Subset List (SubsetList), and the Nominal Attributes List (NominalAList). The 

ordinary attributes from all five rankings are contained in Plist, the common attributes from two subset 
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selection algorithms are contained in SubsetList, and the nominal set of attributes is contained in 

NominalAlist. We evaluate detection performance in terms of ACC. 

The goal of this work is to find the highest ACC from the nominal set of attributes used. As shown in 

algorithm 1, we find the common attributes from the top-ranked attributes from all seven lists for each 

value of I. The common attributes from each of the five rankings are listed in Temp Common, and this 

set is then added to Plist. In Plist, identical attributes are removed. This step is necessary because, as I 

increment, Temp Common contains the attributes from the top-ranked attributes of all the lists 

containing attributes that have already been added to Plist. If we discover any ordinary attribute during 

any iteration of I, Plist is updated with the newly discovered common attributes. For the detection of 

test data using the attributes in Plist, a neural network detection algorithm is used. 

 

Algorithm 1 Selection of nominal attributes from ranked features 
 

Input: Five rankings of attributes: IGList, GRList, CHIList, OneRList, CorelationList obtained 

from IG, GR, CHI, OneR, Correlation respectively 

Two subsets of features: CFSList, FilteredList obtained from CFSSubset, Filtered Subset  

respectively 

 

Output: Nominal set of attributes which gives best detection accuracy 

PList <- {}, NomialFList <- {}, Amax = 0; common_list <- common attributes of all 5 ranking 

algorithms, SubsetList <- {} 

For I = 1 -> common_list.length do 

Temp_common <- (IGList)I∩ (GRList)I ∩ (CHIList)I ∩ (OneRList)I ∩ 

(CorelationList)I Diff = PList – Temp_common 

PList = 

PList U 

(Diff) IF I 

<= 41 

Subset_Temp <- (CFSList)I ∩ 

(FilteredList)I PList = PList U (SubsetList – 

Subset_Temp) 

Apply normalization on data 

Run NN on test data using 

attributes in PList Calculate ACC of 

detection results 

If ACC > Amax 

then Amax 

<- ACC 

NominalALis

t <- PList 

End if  

End for 

Return Nominal A List 
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4 Performance Assessment 

4.1 Dataset used 

A dataset is required to carry out the experimental work. The Drebin dataset [22], which contains 5560 

samples, was used to collect vulnerable apps. The benign samples were obtained from the Google Play 

store and the CICMALANAL2017 [23] dataset. 2008 samples from each category (Benign and Malware) 

were used to train the neural network. 

For the current work, Accuracy, True positive rate and False positive rate were considered as the 

evaluation as shown in Equation 1. 

 

         (I) 

 

True Positive (TP) represents the malicious samples correctly classified as malicious. True Negative 

(TN) represents the benign samples correctly classified as benign. False Positive (FP) represents the 

benign samples misclassified as malicious. False Negative (FN) represents the malicious samples 

misclassified as benign. Table 2 represents the confusion matrix which is used to compute the evaluation 

metrics. 

Table 2. Confusion Matrix 

  Class Prediction  

 Malware Benign 

Malware True Positive (TP) False Positive (FP) 

Benign False Negative (FN) True Negative (TN) 

 

In Section 4.2, we discussed the attribute rankings obtained using I.G., G.R., Chi squared test, OneR, 

and Correlation on the entire set of 329 attributes. The detection results are also discussed in this 

section, where we show how using the nominal attribute set improves accuracy over the entire attribute 

set. Section 4.3 discusses the efficacy of nominal attribute set on unknown samples. Except for a few 

exceptions, the results show that unknown samples with a nominal set of attributes can be detected with 

the same accuracy as all features. Section 4.3 demonstrates that the nominal attribute set produced by 

algorithm 1 that considers all seven rankings is a more appropriate set with higher detection accuracy 

than the other attribute set produced by individual rankings. Last section discusses the limitations of 

this approach. 

4.2 Ranking of Attributes 

Values are calculated for all ranking algorithms by considering both normal and vulnerable app 

attributes. AUTHENTICATE ACCOUNTS permission attribute is used only by normal samples, so, 

this has the lowest chi value. On the other hand, the range of attributes Average number of packets sent 

per second for both normal and vulnerable samples is very similar: 5-10553 for normal samples and 8.1- 

10586 for vulnerable samples. Because the range of attributes is very similar, the I.G. for this attribute 

is the lowest while the CHI test has the highest value. As a result, it is possible that in one test, an 

attribute receives the highest priority while in another, it receives the lowest priority. As a result, we 

must select the attributes from all of the tests that will provide better detection accuracy. 

We get the results as shown in Table 3 when we apply our attribute selection algorithm to all of the 
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ranked attributes obtained from all seven tests. The first column displays the value of I, i.e., common 

attributes from all seven lists, calculated by taking the top I attributes from all seven rankings. Table 3 

shows that until k=9, there is no single common attribute from all seven lists. The second column 

contains the total number of attributes in the primary list derived from the top I attributes of each ranked 

list. This column will provide us with the final output of the number of attributes that are sufficient to 

produce a higher ACC score than the previous one. We get the same accuracy even after adding new 

attributes to the primary list, so we won't consider those attributes because our goal is to get a nominal 

attribute set that gives better detection results. Only when the ACC score is higher than the previous 

one, attributes are added to the final list. 

At I=267 we get the highest ACC score considering 191 attributes as given in the second column of the 

Table 3. The results show that it correctly detects 283 normal samples and 202 vulnerable samples out of 

a total of 298 and 204. Furthermore, by adding a greater number of attributes to this list, the same 

detection result is obtained until the last interaction in which attributes such as socket, 

REQUEST_PASSWORD_COMPLEXITY, Average number of packets sent per flow, and so on are 

added, which are ranked higher in OneR and lower in Information Gain. We obtained 94.57 percent 

accuracy with the entire attribute set, and 96.41 percent accuracy with the nominal attribute set of 191 

attributes, which is better than the entire attribute set. 

Table 3. Detection results of proposed attributes Selection algorithms 
 

Value of I Total attributes in nominal 

subset 

TPR% FPR% ACC 

1, 2, 3, 4, 5, 6, - - - - 

7, 8, 9 

10 to 19 

 

1 

 

0 

 

0 

 

59.36% 

20 to 27 3 0.01 0 59.965% 

28 to 33 6 0.01 0 60.15% 

34 to 47 8 0.34 0 73.30% 

48, 49 14 0.57 0.11 75.89% 

50 to 54 15 0.70 0.19 76.49% 

55 to 61 20 0.75 0.11 83.26% 

62 to 81 23 0.75 0.07 85.65% 

82 to 86 37 0.86 0.13 86.65% 

87 t0 133 41 0.82 0.10 87.05% 

134 to 159 62 0.82 0.09 87.25% 

160 to 180 70 0.86 0.09 88.84% 

180 to 200 109 0.98 0.11 92.43% 

201 to 203 110 0.98 0.10 93.02% 

204 to 224 112 0.94 0.05 94.62% 

224 to 235 152 0.95 0.05 94.82% 

236 to 260 153 0.99 0.07 95.01% 

261 to 266 179 0.98 0.06 95.61% 

267 to 329 191 0.99 0.05 96.41% 

 

 

Jigna Rathod, Dharmendra Bhatti

482



4.3 Unknown Samples 

To look over the usefulness of our proposed algorithm on unknown samples, we kept some vulnerable 

samples like AccuTrack, Adrd, Aks, GoldDream, FakeLogo, FakePlayer and FakeRun separated from the 

training as well as the testing dataset. The samples from these malware families are not included in the 

training database while we extracted attributes using dynamic analysis and therefore, they known as 

unknown. Total of 36 samples as given in Table 4 are tested using the set of 191 attributes selected by 

proposed algorithm. The detection consequences are shown in Table 5. It is possible that the simplest 

vulnerable pattern from the FakeLogo family is not correctly detected. Multilayer perceptron neural 

network with 191 attributes can able to detect malware from all the other unknown families given for 

testing. Except for this one sample, detection accuracy using 191 attributes is equivalent to that of using 

329 attributes. 

Table 4. List of malwares used in these experiments 
 

Set I  Set II  

Malware Total Samples Malware Used for testing 

DroidDream 32 AccuTrack 02 

DroidKungFu 172 Adrd 08 

FakeInstaller 54 Aks 02 

GinMaster 36 GoldDream 08 

Iconosys 24 FakeLogo 04 

Kmin 18 FakePlayer 04 

Opfake 40 FakeRun 08 

Plankton 116   

Gappusin 52   

GinMaster 36   

BaseBridge 308   

 

Table 5. Detection results on unknown samples 
 

 AccuTrack Adrd Aks GoldDream FakeLogo FakePlayer FakeRun  

Using 191 attributes 100% 100% 100% 100% 90% 100% 100%  

Using 329 attributes 95% 93% 100% 95% 92% 98% 100%  

 

4.4 Nominal Attribute Set 

In this section, we will discuss the nominal set obtained from proposed algorithm contains 191 attributes 

is suitable set that can give high detection accuracy. We argue whether a different combination of or 

less than 191 attributes can provide better detection accuracy or not. To put this argument to the test, 

we created four other sets of 191 attributes, each of which was derived from a different ranking 

algorithm. Set1 is the set of the top 191 attributes obtained from Chi-Squared ranking, i.e., Set1 = Top 

191 CHI Squared attributes. Set2 is the set of the top 191 attributes derived from Gain Ratio, i.e., Set2 = 

Top 191 GR attributes. Set3 is the collection of the top 191 attributes obtained from Information Gain, 

i.e., Set3 = Top 191 IG attributes. Set4 is the set of the top 191 attributes obtained from OneR, i.e., Set4 

= OneR's top 191 attributes. Set5 = Top 191 attributes of proposed algorithm are the nominal attribute 

set obtained from the proposed algorithm. We compare the detection results from these five different 
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sets to determine which one has the highest detection accuracy. Table 6 compares the outcomes of the 

aforementioned experiments. 

Table 6. Result comparison of proposed algorithm with existing feature ranking  

 

algorithms Algorithm ACC FN FP TN TP 

Chi (Set 1) 83.46% 35 48 263 156 

GR (Set 2) 90.23% 27 22 271 182 

IG (Set 3) 85.65% 39 33 259 171 

OneR (Set 4) 92.43% 36 7 262 197 

Proposed Algorithm (Set 5) 96.41% 16 2 282 202 

 

The above result compares all five sets' False Negative and False Positive rates. Set 5 produces the fewest 

false negatives and achieves the highest accuracy of 96.41 percent when compared to all other 

algorithms. Set5 correctly detects 202 vulnerable samples out of 204 samples, with only two samples 

misclassified as benign. Set 5 correctly detects 202 samples compared to 156 from Set 1, 182 from Set 2, 

171 from Set 3, and 197 from Set 4. Set5 generates 16 false negatives compared to 35 from Set1, 27 from 

Set2, 39 from Set3, and 36 from Set4. As a result, Set5 with 191 attributes obtained from the proposed 

selection algorithm from various rankings is superior to other sets of the same size obtained from 

individual attribute rankings. 

Next, we must demonstrate that this is the appropriate nominal attribute set, i.e., no other set with 

fewer than 191 attributes can produce better detection accuracy. When several attributes are considered 

as 70 from Set1, Set2, Set3, and Set5, we find that Set1 detects the highest true positives and an equal 

number of false negatives with Set 5 and lower false negatives when compared to Set2 and Set3, as shown 

in Table 7. The number of True positives from Set1 and Set5 is 185 and 177 respectively. In addition, the 

number of false negatives from Sets 1 and 5 is 27. Sets 1 and 5 produce 54 and 29 false positives, 

respectively. As a result, attributes in Set5 misclassified fewer malware samples as benign as attributes in 

Set1, and overall accuracy in Set5 is higher than in all other sets. We believe that in terms of security, 

our goal should be to ensure that no vulnerable application goes undetected. Keeping this in mind, we 

believe that employing 191 attributes with high detection accuracy is preferable to employing 70 

attributes with low detection accuracy. As a result, we conclude that this is the nominal subset and that 

no other set of attributes with fewer than 191 attributes can produce better detection results. 

Table 7. Result comparison of proposed algorithm using less attributes with other existing feature ranking 

algorithms 

Algorithm ACC FN FP TN TP 

Chi – 70 83.86% 27 54 236 185 

GR – 70 86.85% 39 27 280 156 

IG – 70 79.68% 61 41 255 145 

Proposed Algorithm – 70 88.84% 27 29 269 177 

4.5 Limitations and Discussion 

According to the results of the experiments, 202 of the 204 malware samples were successfully detected. 

There were 282 benign samples correctly detected and 16 false negatives out of a total of 298 samples. 
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All of these samples produce attributes that closely match those of malware. The average packet size, for 

example, is around 700 bytes; the average number of packets sent per flow is around 400; the 

permission sets used by the examples are similar to those used by malware; the frequency of system calls 

is high, and so on. As a result, normal samples with high attribute values can be classified as malware 

samples. 

Malicious families such as BaseBridge and AnserverBot wait for system-related events such as a phone 

reboot to complete before launching their malicious payload at the device. Because we were aware of 

their behavior, all such occasions were completed concurrently while performing dynamic analysis. In 

many cases, normal users are not aware of such activities and thus do not complete that activity or 

do so after a long period of time; as a result, the malware, despite having infected the phone, will now 

no longer produce any network traffic and thus will evade detection for that period of time. 

The proposed framework is an off-device detection framework, which means that dynamic analysis 

performed in the device is analyzed at another system rather than on a mobile device. Doing on-device 

detection consumes smartphone assets such as memory, CPU, battery, and so on, but it provides real- 

time detection. 

The experiments are carried out on malware samples discovered around 2013. There has been a 

significant increase in the number of android malwares since then. As a result, we will broaden our 

research to include more recent malware samples. 

We conducted a dynamic analysis in the emulator. Emulators have limitations, such as the inability to 

generate booting events, phone calls, or SMS-related events. So, if any vulnerable sample is waiting for 

such events to trigger their malicious activity, they will go undetected because they have not executed 

any malicious activity. As a result, dynamic analysis can be performed in real-world devices, which will 

be part of future work. 

5 Conclusion and Future Work 

In this work, we've developed our Android application system to capture the behavior of system call 

traces and network traffic, as well as the permission made by means of each application throughout their 

run time. We conducted experiments with various feature ranking and feature subset selection 

algorithms, but we were unable to obtain the desired results. So, in order to redesign the detection rate, 

we prioritized the attributes from a total of 329 attribute sets primarily based on the rankings from the 

IG, GR, CHI, OneR, and Correlation tests. As an attribute set, CFSSubset and FilteredSubset provide 44 

attributes to detect malware. An algorithm is written to extract the most relevant attributes for 

vulnerability detection from the rankings obtained by IG, GR, CHI, OneR, Correlation, and CFSSubset 

and FilteredSubset subsets. The proposed algorithm extracts 191 relevant attributes from a total of 329, 

resulting in high detection accuracy. However, few samples remain undetected as they are using the 

same attribute range as benign. When the attribute prioritization algorithm is used, we achieve a 

detection accuracy of 96.41 percent. 

The attacker is continually creating harmful software in order to steal the user's personal information. 

In this work, 38 different malware families were used to train the model, and our model can detect 

malware from known families. This study can also be developed to produce a multiclass malware 

training model that can detect more real-world dangerous apps. 

This work will be expanded in the future in different aspects, such as the analysis of a larger data set, 

the ability to undertake dynamic analysis in real devices to bypass emulator restrictions, and so on. In 

addition, by adding new susceptible apps to our database, we can identify them. 
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