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Free space wireless signal communication has the capacity and vast spread expan-
sion to provide the right platform to support the growing demand for communi-
cation services. The propagation of electronic waves is the core of actual wireless
communication links between ground stations and satellite ground communica-
tions. However, rain, dust, ground topography, urban surface, and other physical
barriers weakened the transmitted signal strength and loss, reducing the quality
and completion of the data transfer process. This work focuses on diffraction, weak-
ening, and loss of signals when crossing urban areas surrounded by high buildings.
We present a machine learning model for estimating the signal strength after cross-
ing the urban areas. This assessment helps recommend the proper signal strength
required when launchingthe signals towards the end station located in urban sur-
roundings. We use aneural network system that derivespatterns and rulesfrom a
given dataset containing simulated sampling data and predicts the optimal trans-
mission strength when launched.
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1. Introduction 

Wireless communication services became attractive to mega-companies that foresee an excellent 

opportunity to connect disconnected remote regions, serve emerging machine-to-machine 
communication, Internet-of-things connectivity, etc. Typical ground stationsinmodern urban areas are 
surroundedby high buildings disturbing the propagation of electromagnetic waves. This research 
focuses on the reflections and diffraction signals caused bybuildings, leading to reduced signal 

effectiveness and even signal loss. To avoid this, it requires increasing the signal strength accordingly. 
Predicting the signal attenuation and correcting the transmission intensities make it possible to 
maintain a proper signal-to-noise ratio (SNR) and prevent transmission interference. 

Some research proposalsoffer a variety of assumptions and tailored solutions. Some focus on rain and 

dust,while others provide estimated measures for signal propagation through buildings built from 
various materials, such as concrete, wood, and metal. We propose a machine learning-based system 
that accurately estimatesthe signal attenuation level and automatically increases the next signal 
strength. We have developed a prototype using Machine learningand associated Python programming 

software. Then we conducted fiveexperiments, one for each frequency from 2.4GHzto 72GHz, using 
data collected from a satellite belonging to the Genesis project. Results show that the estimated signal 
for all frequencies is close to the actual value.  

This paper is organized as follows: section 2outlines related work, section 3 presents the proposed 

model, section 4 outlines the experiment setup and results, and section 5 contains the conclusions and 
future work. 

2. Related Work 
 

Tozer et al. [1] Outline the application and features of High-Altitude Platforms (HAP) for Wireless 
Communications and consider using HAPs to deliver future broadband wireless communications. The 
term building entry loss we used here corresponds to the definition made at ITU-R Rec. [2], defined as 
the excess loss due to building walls and other building features. Building entry loss depends on the 
building type, construction, and electrical parameters of the material used. Measurements of 
Penetration loss of various building materials at 1–8 GHzappear in [3]. [4,5] presentelectrical 
parameters of materials of S-band frequencies. Many other aspects influence the building entry loss, 
such as the receiver's position inside the building, the elevation of the transmitter, and so forth, making 
it difficult to estimate the level of received power inside a building accurately. Adecrease in the entry 
losses into building with floor height can often be observed [6,7]. Entry loss measurements for2 GHz 
arereported in [8,9]. Measuring the spread of the received signal within buildings has been reported in 
[10,11, 12]. In [13], the authors focused on the overall building entry loss and building entry loss as a 
function of elevation and entry angle and the results of time delay spread. [14]presented a new model of 
the path loss parameters.D. Micheli et al. [15] describe a simple way to measure electric wave 
attenuation within an indoor scenario, demonstrating attenuation level differences for different wall 
materials and textures. Al-Hourani et al. [16] propose a framework for modeling satellite-to-ground 
signal attenuation in urban environments.It captures the shadowing using measurements collected 
from a global navigation satellite system (GNSS).The mentioned methods are based on various data 
analysis methods to identify the contributing parameters to signal loss. This approach requires proof of 
the truth of the found parameters. Our proposed system is based on accumulated data processed by 
proven ML methodologies generating improved and accurate outcomes.   

3. Experiment Background, Setup, and Execution 

Building shadowing loss relates tothe transmission loss through a building. Measurements have been 
formulated to calculate values ofbuilding shadowing loss. For example, the average loss through 
concrete/brick building fora frequency of 11 GHz. with vertical and horizontal polarization is 30.1 dB 
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(Std. dev. 5.0) for V-Pol and 28.6 dB (Std. dev. 5.5) for H-Pol.These measurements show a 
highdependency on construction material in determining the primary propagation mode and the 
amount of attenuation caused by the obstacle. Metal-based construction buildings generate the highest 
average signal attenuation, 35-40 dB. Concrete causes 25-35 dB, and wood 10- 25 dB. The transmission 
was the main propagation mode for wooden and concrete structures. Propagation by diffraction 
appears for metal, increasing from the corners towards the center of the building shadow. The 
attenuation due to diffraction increased from 5.0 to 10.0 dB. 

The free space loss formula is as follows: 

     𝐿𝑓𝑠 = 32.45 + 20 ∙ 𝑙𝑜𝑔(𝑑(𝑚)) + 20 ∙ 𝑙𝑜𝑔(𝑓(𝐺𝐻𝑧))      (1) 

Where d is the distance defined in Fig. 2. and f is the carrier frequency (GHz). Set transmitted power to 
be Pt(dBm) and received power to be Pr(dBm). The losses through the Buildingarestated as LE, 
sending antenna gain, and receiving antenna gain in the transmission path are denoted as GT and GR, 
respectively.Then we can get equation (2): 

             𝑃𝑡(𝑑𝐵𝑚) + (𝐺𝑡 − 𝐿𝑓𝑠 − 𝐿𝐸 + 𝐺𝑟) = 𝑃𝑟(𝑑𝐵𝑚)        (2) 

And then, the losses through the Buildingare inferred from equation (3). 

𝐿𝐸 = (𝑃𝑡(𝑑𝐵𝑚) − 𝑃𝑟(𝑑𝐵𝑚)) − 𝐿𝑓𝑠 + (𝐺𝑡 + 𝐺𝑟)               (3) 

The Omni-directional antenna used in the experiment is likea half-wave dipole antenna whose gain is 
2.15 dB, and the normalized directivity function of the electric field of the half-wave dipole antenna is 
presented by equation (4): 

𝐹(𝜃) = 𝑠𝑖𝑛(𝜃)                       (4) 

From equation (4), we get equation (5): 

𝐺𝑡 + 𝐺𝑟 = 4.3 + 10 ∙ 𝑙𝑜𝑔([𝐹(𝜃)]4) = 4.3 + 10 ∙ 𝑙𝑜𝑔(𝑠𝑖𝑛4𝜃)                  (5) 

The horn antenna is the receiving antenna in the building scenario, so the receiving antenna gain is 
appropriatelyconsidered. 

We selected a reinforced concrete shear wall structurebuilding. The antenna is a horn antenna with 
vertical polarization, and the transmitter is an Agilent E8267D signal generator. The output power in 
the test is set to 33 dBm, and the receiver is an Agilent N9030A signal analyzer. 

For Constructing the database for the learner,we used the collected data based on: (1) the building loss, 
(2) geometric calculations related to the location of the ground station and the height of the building, 
(3) and Satellite orbits to build a learning database that will enable building loss prediction. The input 
data came from STK simulation, which links satellite orbit (time and angle) with channel orientation, 
and geometric calculations relating to a particular scenario.Table 2 depicts an example of the database 
record layout used for our experiment with a signal frequency of 72 GHz: 

Table 1:Dataset records used for our prediction experiment 

 

Time (LCLG) Azimuth (deg) Elevation (deg) Range (km) EIRP (dBW) Xmtr Power (dBW) Xmtr Gain (dB) Xmtr EIRP Intensity (dBW/Sterad) Atmos Loss (dB) UrbanTerres Loss (dB)

24/6/2020 12:18:20 269.08 5 2092.57019 84.8873 30 126.7933 73.7783 17.4649 243.72

24/6/2020 12:18:21 269.082 5.048 2088.404155 84.7149 30 126.6204 73.6948 17.3154 243.09

24/6/2020 12:18:22 269.086 5.124 2081.760992 84.6428 30 126.4718 73.5434 17.0813 242.39

24/6/2020 12:18:23 269.09 5.201 2075.118627 84.5081 30 126.3504 73.475 16.8524 241.64

24/6/2020 12:18:24 269.094 5.278 2068.477073 84.3521 30 126.2628 73.3019 16.6285 241.02

24/6/2020 12:18:25 269.098 5.355 2061.836346 84.2634 30 126.1509 73.2396 16.4095 240.32

24/6/2020 12:18:26 269.102 5.432 2055.196461 84.1542 30 126.0643 73.114 16.1952 239.76

24/6/2020 12:18:27 269.106 5.51 2048.557434 84.102 30 125.9682 72.9149 15.9854 239.08

24/6/2020 12:18:28 269.11 5.588 2041.919281 83.91 30 125.8196 72.7792 15.7801 238.46

24/6/2020 12:18:29 269.114 5.666 2035.282017 83.8062 30 125.6988 72.697 15.579 237.76

24/6/2020 12:18:30 269.118 5.745 2028.645659 83.7767 30 125.6444 72.688 15.3821 237.21

24/6/2020 12:18:31 269.122 5.824 2022.010222 83.7702 30 125.5029 72.4907 15.1892 236.62

24/6/2020 12:18:32 269.126 5.903 2015.375724 83.5991 30 125.3556 72.3137 15.0002 236.06
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This database will serve for training the deep learning system described in the next step. Above the 
table header is the source of each table column.  

For the prediction method, deep learning (DL) algorithm has been developed, with the following steps: 

1) Accept the training and experiment dataset 

Table 2 is an example of the training and experiment data set required to input the predicting 
system.The label class in this case can be binary (e.g., +1 (if attenuation = 0), -1 (if attenuation ≠ 
0)). 

2) Execute the Prediction deep learning algorithm  

The following notation demonstrates the prediction procedure:  

𝑋𝑚 × 𝑛,𝑑,𝑡 → 𝑌𝑚∗× 1,𝑑,𝑡+∆𝑡(𝑡𝑟𝑎𝑖𝑛 𝑓𝑖𝑙𝑒)                                              (6) 

𝑋�̃� × 𝑛,𝑑∗,𝑡 → 𝑌�̃�∗ × 1,𝑑∗,𝑡+∆𝑡(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑓𝑖𝑙𝑒)                              (7) 

Xrepresents samples of satellite data, with matrices size m × n produced at a specific date d and specific 

time t with class labels m* produced for the same date d but with different time t+Δt). The trained 
classifier classified the experiment samples (made from latterly date d* and specific time t). Because 
the algorithm classifier labels for future times, it is a prediction of satellite attenuation.  

Satellite data may vary according to days and time (hours/min/sec). This section will denote by 

tdnmX ,,  a dataset of size m with n features, collected on day d and at time (hour/min/sec) t and by 

tdmY ,,1 the class labels associated tdnmX ,, . Therefore, the prediction problem is given a dataset

tdnmX ,, known for every time t to estimate ttddmY  ,,1~ , where Δd and Δt respectively define a 

variation of day and time (hour/min/sec).     

The proposed estimation procedure then can be decomposed into four steps: 

i. Collect two samples of data, 
tdnmX ,,
and ttdnmX  ,, ,   Δt> 0,  

ii. Compute the class labels ttdmY  ,,1 ,  

iii. Compute a new training set 
dnmZ ,1

, using 
tdnmX ,,
and 

ttdmY  ,,1
 by 

concatenation, that is ];[ ,,1,,,1 ttdmtdvmdnm YXZ   ,  

iv. Collect the test set tddnmX ,,~  (Δd> 0), and compute ttddmY  ,,1~  using the 

machine learning algorithm on dnmZ ,1 and tddnmX ,,~   

The learning system that predicts the channel attenuation is trained. Two different methods are used to 
find a faster and more accurate process. We use the MLNN (long short-term memory) model. It is an 
artificial neural network designed to recognize patterns in data sequences, such as numerical time 
series data emanating from sensors, stock markets, and government agencies. RNNs (recurrent neural 
networks) and MLNNs are different from other neural networks as they have a temporal dimension.   

We aim to maintain a constant signal level conveyed by the desired SNR level for system alignment, 
which may differ from the predicted signal-to-noise ratio level. We use the following model: 

𝑆𝑁𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −   𝑆𝑁𝑅𝐷𝑒𝑠𝑖𝑟𝑒𝑑  = 0 
𝑃𝑇 ∙𝐺𝑇∙𝐺𝑅 ∙𝐿𝐹𝑆 ∙𝐿𝐸

𝑁0 ∙𝐵
−  𝑆𝑁𝑅𝐷𝑒𝑠𝑖𝑟𝑒𝑑  = 0               (8) 

where PT is transmitter output power, LE is losses through the Building, LFS is free space path loss, GT 
is the transmitting antenna gain, GR is the receiver antenna gain,No is noise energy, and B is the 
bandwidth. Using the parameters PT and LE, we achieve this goal. If the losses through the 
buildingdecrease, the transmitter outputsthe power required to adjust and vice versa.  
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The experiment setup comprises a neural network system, a Pythonprogram code, and sample records 
described in section 3.5. We have built a system that assesses SNR values for a future timeframe. The 
model succeeded in predicting the SNR sample one second in advance, based on the samples with a 
loss of 1%, which is still reliable. We collected data from satellites, researched and explored optimal 
ways to build the deep neural network architecture, and chose the parameters which reduce the loss 
function to a minimum. The MLNN system comprises two stages. The first is building, loading the 
neural network, training, and testing the received input data. The second stage is analyzing a prediction 
of the intensity of the signal for the concise term. The mechanism comprises several epochs, starting 
with the entire input samples, reducing to a smaller number, and reducing to one instance at the final 
stage.We identified the optimal parameters converged after four epochs. The parameters are a. Loss 
function: mean absolute error, b. Optimizer: "Adam", c. Activation function: “tanh”, d. Number of 
epochs to saturation: 4, 3 layers: 2 MLNN,1 Dense - First layer: 98 neurons, Second layer: 20 neurons, 
Last layer:1 neuron. 

4. Results 

We introduced the Machine-learning process and compared the predicted attenuation levels to the 
actual results executed over variousfrequencies, from 2.4GHz to 72GHz. The experiment started with 
training the MLNN system using 913 sample records from the STK satellite simulation connected to its 
corresponding earth station.We performed a separate investigation for each of the five frequencies.In 
all experiments, the difference between the estimated signal loss Vs. the actual loss is very close. We 
checked the training results, and they resemble the accurate results to a convincing extent.  

5. Conclusions 

This workexploresthe accuracy of a Machine Learning Neural Networks model to predict the 
signalattenuation while signals propagate via the free space, disturbed by rain, haze, and dust.We 
executedour system for the following frequencies 2.4GHz, 10GHz, 23GHz, 48GHz, and 72GHz. We 
compared the predicted and actual results and found that our prediction model isclose to the actual 
results. The accuracy level of the Neuron Network is very high. In future work, we intend to improve 
prediction accuracy further, expand the research applicability to other obstacles causing signal 
attenuation and loss, and propose the proper formula or mechanism to overcome these obstacles.  
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