
An Approximate Analytical Approach of
Water Transport in an Unsaturated
Porous Medium by Modified Variational
Iteration Method
Jyoti Yadav, Twinkle R. Singh
Department of Mathematics and Humanities, S.V. National Institute of Technol-
ogy, Surat, Gujarat, India
Corresponding author: Jyoti Yadav, Email: joyyadav3097@gmail.com

One of the most familiar equations for examining the properties of infiltration in
unsaturated regions of soil like a porous media is known as Richards’ equation.
The main aim of this paper is to illustrate the behaviour of the water transport
problem in an unsaturated soil. The Variational Iteration Method and the Modified
Variational Iteration Method have been used to determine an approximate analyti-
cal solution for Richards Equation at different cases. A comparison of the solution
has been made with the exact solution, Finite Difference Method, and Elzaki Ado-
main Decomposition Method (EADM) solutions. For the numerical and graphical
representation, MAPLE and MATLAB software are used.

Keywords:Richard’s Equation, Variational IterationMethod (VIM),ModifiedVaria-
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1 Introduction

Various kinds of phenomena occur in the scientific and engineering fields that
are usually represented using ordinary differential equations or partial differen-
tial equations. Many scientists have worked hard to model water penetration in
unsaturated soil [16, 19, 23, and 28]. For non-linear equations, there are various
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different types of numerical [11, 23 and 25] and analytical methods [ 5, 20 and
30] are available. Although there are few analytical ways to simulate infiltration,
there are a number of different numerical studies that try to simulate this phys-
ical process. The MVIM and VIM are two latest methods for solving non-linear
partial differential or mathematical equations that can provide a convenient ana-
lytical solution. Engineers, non-specialists and several others are using theMVIM
to convey non-linear problemswhile this provides an estimated closed form of so-
lution. MVIM can manage highly non-linear differential equations without using
small variables. However, according to the Variational iteration theory, the solu-
tion algorithm is efficient, and only a few iterations are required to reach good
precision. [24]Richard’s equation is generally a partial differential equation de-
scribing water transport in unsaturated soils. Richards equation is modelled by
various numerical methods [11, 13 and 25]. Infiltration through unsaturated soil
is widely characterized by the accumulation of precipitation or moisture surface
processes. Richards developed a continuum mechanics-based governing equa-
tion for water flow in soil. The continuity equation was combined with Darcy’s
law as a momentum equation in this model. The mixed formulation, the h - based
formulation, and the 𝜃 -based formulation are the three main kinds of occurring
equations discussed in the paper [8, 12 and 27], where h is the weight-based
pressure potential and 𝜃 is the unsaturated soil moisture content. In a moisture
less soil, the one-dimensional form of Richards Equation can be computed with
Darcy’s law and the continuity equation, as shown below.

𝑞 = −𝐾 (𝜕ℎ𝜕𝑧 + 1) (74.1)

𝜕𝜃
𝜕𝑡 = 𝜕𝑞

𝜕𝑧 (74.2)

K represents unsaturated hydraulic conductivity, q represents flux density, and
t represent time. A mixed form of Richards’ equation is constructed by inserting
equation (1) in (2):

𝜕𝜃
𝜕𝑡 = 𝜕

𝜕𝑧 [𝐾 (𝜕ℎ𝜕𝑧 + 1)] (74.3)

This equation is known as Richards equation which governs water movement
in the soil [26]. Two independent variables in equation (3) are soil water con-
tent (𝜃) and pore water pressure head (ℎ). To discuss an interrelation between
hydraulic conductivity, saturation, and pressure. There are native relations that
are demanded to gain the result of the equation. Assuming that the differential
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water capacity is used to remove either 𝜃 or h. So, for that soil water retention
curve is defined as:

𝐶(ℎ) = 𝜕𝜃
𝜕ℎ (74.4)

The equation (3) is inserted in equation (4) is used to define the h-based expres-
sion of Richard’s equation.

𝐶(ℎ) ∗ 𝜕ℎ
𝜕𝑡 = 𝜕

𝜕𝑧 (𝐾 𝜕ℎ
𝜕𝑧 ) + 𝜕𝐾

𝜕𝑧 (74.5)

The ratio of hydraulic conductivity (K) to differential water capacity (C) is termed
as pore water diffusivity (D). The 𝜃 - based expression of Richard’s equation is
followed as:

𝐷 = 𝐾
𝐶 = 𝐾 𝜕ℎ

𝜕𝜃 (74.6)

Both D and K are pore water diffusivity and hydraulic conductivity is both mod-
ified by (moisture content). Richard’s equation is formed by combining the equa-
tions (6) and (3):

𝜕𝜃
𝜕𝑡 = 𝜕

𝜕𝑧 (𝐾 𝜕𝜃
𝜕𝑧 ) + 𝜕𝐾

𝜕𝑧 (74.7)

D and K are the dependent parameters and both are difficult to evaluate. So, there
are different kinds of models that have been developed to evaluate these parame-
ters. The most useful models are the exponential models [12], the Van Genuchten
model [27], and Brook’s and Corey’s model [8]. The functional model in Van
Genuchten’s model compares experimental data, however, it is highly complex.
Despite the fact that Brooks and Corey’s model [8] is clearly defined or more ex-
act value that is associated with greater pore size. Some relations are presented
to define D and K according to Brook’s and Corey’s [8].

𝐷(𝜃) = 𝐾𝑠
𝛼𝜆 (𝜃𝑠 − 𝜃𝑟 )

( 𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
2+ 1

𝜆
(74.8)

𝐾(𝜃) = 𝐾𝑠 (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
2+ 1

𝜆
(74.9)

where 𝐾𝑠 is saturated hydraulic conductivity, 𝜃𝑠 and 𝜃𝑟 are saturated soil moisture
content and residual water content respectively. 𝛼 and 𝜆 are parameters that were
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determined by the experiment. The pore size distribution index [8] is used to
determine Brooks and Corey. Brooks-Corey model soils can be simplified to the
following equations by performing some additional considerations [8 and 10].

𝐷(𝜃) = 𝐷0(𝑚 + 1)𝜃𝑚, 𝑚 ≥ 0; (74.10)

𝐾(𝜃) = 𝐾0𝜃𝑘 , 𝑘 ≥ 1 (74.11)

𝐾0 is the constant. The soil parameters such as pore size distribution and particle
size are indicated by 𝐷0 and k.

𝜃 is applied between 0 to 1 for the presentation of D and K, and diffusivity is
reduced such that ∀𝑚, ∫10 𝐷(𝜃)𝑑𝜃 = 0 [ 21 ] . Various numerical and analytical so-
lutions to Richard’s equation have been examined based on Brook’s and Corey’s
depiction of D and K. Putting 𝑚 = 0 and 𝑘 = 2 in equations (10) and (11) gives
the standard forms of Burger’s equation. Burgers’ equation has also been inves-
tigated by several researchers [6,7 and 30]. Instead of time and depth, another
variable that could be a linear mixture of them is discovered using the travelling
wave technique [21]. To solve these transform equations, a tangent-hyperbolic
function is commonly used. As a result, the 𝜃 - based Richards’ equation in order
of (m, 1) in [21]:

𝜃𝑡 + 𝛼𝜃𝑚𝜃𝑧 − 𝜃𝑧𝑧 = 0 (74.12)

The Equation (12) is an exact solution of Richard’s equation

𝜃(𝑧, 𝑡) = (𝛾2 + 𝛾
2 𝑡𝑎𝑛ℎ(𝐵1(𝑧 − 𝐵2𝑡)))

1
𝑚

(74.13)

where 𝐵1 = −𝛼𝑚+𝑚|𝛼|
4(1+𝑚) 𝛾 (𝑚 ≠ 0), 𝐵2 = 𝛾𝛼

(1+𝑚) . Here 𝛼 and 𝛾 are arbitrary constant

and taken as 1 in this paper [14]. Considering 𝑡 = 0 then gives initial conditions.
The non-linear based Richard’s equation was examined in this work.

VIM and MVIM were introduced in the following sections, and also used to the
Richards Equation to have an approximate analytical solution for equation (12),
with comparisons to the exact solution and the Elzaki Adomain Decomposition
Method [28] have been shown.

2 Methods

The approach of He’s Variational Iteration Method [2, 14, 20, 21, 24 and 29] can
be described by assuming the non-linear partial differential equation.
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𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑅 (𝑈 (𝑥, 𝑡)) = 𝑓 (𝑥) (74.14)

U(x,0)=g(x)

where 𝑓 (𝑥) is an inhomogeneous term, 𝐿(𝑥) is a linear term, 𝑁(𝑥) is a non-linear
term and R is a linear operator which has partial derivatives with respect to 𝑥 . In
accordance with the method, we can set up a correction functional for the equa-
tion (14) is as follow:

𝑈𝑛+1(𝑥) = 𝑈𝑛(𝑥) + ∫
𝑥

0
𝜆(𝑥) [𝐿(𝑈𝑛(𝑥)) + 𝑅( ⏞𝑈𝑛(𝑥)) + 𝑁( ⏞𝑈𝑛(𝑥)) − 𝑓 (𝑥)] 𝑑𝜏 (74.15)

while 𝜆 is a Lagrangemultiplier [19] that the VIM can be recognized. [4,15,17,19,22
and 29]𝑈0(𝑥) is an initial approximation with possible unknowns, 𝑈𝑛 denotes
the nth approximation, and ⏞𝑈𝑛is considered as a restriction variation i.e. 𝛿 ⏞𝑈𝑛 =
0. The Lagrange Multiplier and the initial guess 𝑈0 may quickly calculate the
successive approximation 𝑈𝑛+1, 𝑛 ≥ 0 of the solution U,and hence the solution is
𝑈 = lim𝑛→+∞ 𝑈𝑛 . Equation (15) can be solved iteratively using 𝑈0(𝑥, 𝑡) = 𝑔(𝑥).

The Modified Variational Iteration Method [1, 2, 3] considers the same proce-
dure of Variational iteration Method, but instead of using correction functional
equation (15) we will use this iterative formula:

𝑈𝑛+1(𝑥) = 𝑈𝑛(𝑥) + ∫
𝑥

0
𝜆(𝑥) [𝑅(𝑈𝑛 − 𝑈𝑛−1) + (𝐺𝑛 − 𝐺𝑛−1) − 𝑓 (𝑥)] 𝑑𝜏 (74.16)

where 𝑈−1 = 0 , 𝑈0 = 𝑓 (𝑥) and 𝐺𝑛(𝑥, 𝑡) is obtain from

𝑁(𝑈𝑛(𝑥, 𝑡)) = 𝐺𝑛(𝑥, 𝑡) + 𝑂(𝑡𝑛+1) (74.17)

For obtaining an approximate solution Equation (14) can be solved iteratively and
get the form

𝑈 (𝑥, 𝑡) ≅ 𝑈𝑛(𝑥, 𝑡)
where n final iteration step.

3 Results

In this part, we had applied MVIM and VIM to get the results for Richards Equa-
tion. For the purpose of convenience, the two different cases of m in equation
(12) are considered.
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3.1 Case 1: if 𝑚 = 1
The proposed method is applied to solve Richard’s Equation at m=1. so the equa-
tion (12) can be written as:

𝜕𝜃
𝜕𝑡 + 𝜃 𝜕𝜃𝜕𝑧 − 𝜕2𝜃

𝜕𝑧2 = 0 (74.18)

with initial condition

𝜃(𝑧, 0) = (12 + 1
2 tanh (−𝑧

2)) (74.19)

Applying VIM in the above equation,

𝜃𝑛+1(𝑥) = 𝜃𝑛(𝑥) + ∫
𝑥

0
𝜆(𝑥) [𝜕𝜃𝑛𝜕𝑡 + 𝜃𝑛

𝜕𝜃𝑛
𝜕𝑧 − 𝜕2𝜃𝑛

𝜕𝑧2 ] 𝑑𝜏 (74.20)

Its stationary condition will come as follow:

𝜆′(𝜏 ) = 0
1 + 𝜆(𝜏)|𝜏=𝑡 = 0

The Lagrange Multiplier can be recognized as the 𝜆 = −1. Consequently, the
correction functional will be revised and the initial condition (19) will be treated
as the initial estimate.

𝜃0(𝑧, 𝑡) = (12 + 1
2 tanh (−𝑧

4))
After using the initial approximation in equation (19) we can get the approximate
solution:

𝜃1 = 1
2 − 1

2 tanh (𝑧4) + 1
16 𝑡𝑠𝑒𝑐ℎ (𝑧4)

2

𝜃2 = 1
2 − 1

2 tanh (𝑧4) + 1
16 𝑡𝑠𝑒𝑐ℎ (𝑧4)

2
+ 𝑡

64 tanh (𝑧2) 𝑠𝑒𝑐ℎ (𝑧4)
2
[1 + 𝑡 𝑡

16 + 𝑡
2

tanh( 𝑧
4) + 𝑡

2 𝑡𝑎𝑛ℎ ( 𝑧
4)

and so on.
The approximate solution is obtained as:
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𝜃 = 1
2 − 1

2 tanh (𝑧4) + 1
16 𝑡𝑠𝑒𝑐ℎ (𝑧4)

2
+ 𝑡

64 tanh (𝑧4) 𝑠𝑒𝑐ℎ (𝑧4)
2
[1 + 𝑡 𝑡

16 + 𝑡
2

tanh( 𝑧
4) + 𝑡

2 𝑡𝑎𝑛ℎ ( 𝑧
4) + ...

Applying MVIM with the help of equation (16) in Richards’s equation (12).

where 𝜃−1 = 0, 𝜃0 = 0, 𝜃1(𝑥) = 𝜃0 − ∫𝑥0 [𝑅(𝜃0 − 𝜃−1) + (𝐺0 − 𝐺−1) − 𝑓 (𝑥)] 𝑑𝜏 and
from the equation (17) 𝐺𝑛(𝑥, 𝑡) is obtained as:

(𝜃𝑛(𝑥, 𝑡)) (𝜃𝑛(𝑥, 𝑡))𝑥 = 𝐺𝑛(𝑥, 𝑡) + 𝑂(𝑡𝑛+1)
After applying the modified formula equation(16), at the end it will cancelled out
all the additional recurring calculations and terms. After applying MVIM, the
following solutions are obtained.

𝜃0(𝑧, 𝑡) = (12 + 1
2 tanh (−𝑧

4))

𝜃1(𝑧, 𝑡) = 𝜃0 + 1
16 𝑡𝑠𝑒𝑐ℎ (𝑧4)

2

𝜃2(𝑧, 𝑡) = 𝜃1 + 𝑡2
1024 tanh (𝑧4) 𝑠𝑒𝑐ℎ (𝑧4)

2
+ 𝑡2

128 tanh (𝑧4)
2
𝑠𝑒𝑐ℎ (𝑧4)

2

and so on.
MVIM makes a calculation faster and makes the solution in a simplified form.

Tables 1, 2 and 3 display the comparison of the solution obtained by MVIM, VIM,
EADM and Exact solution with z=0,1,2,3,4 and 5 for t=1,3 and 5 . Furthermore,
the absolute error between the solution and the exact solution generated by the
proposed method MVIM could be seen in the tables below. Table 4 shows the
comparison of solution with numerical method Finite Difference Method (FDM)
and absolute error has been showed. At t=3, m=1, Figure 1 presents a compari-
son between the results obtained by MVIM, VIM, EADM, and the exact solution.
Figure 2 depicts three dimensional behaviour of an approximate solution for the
proposed method (m=1).

3.2 Case 2: if 𝑚 = 2
The proposed method is applied to solve Richard’s Equation at m=2. So the equa-
tion (12) can be written as:
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Table 1: For m=1 and t=1 numerical comparison of solution with differ-
ent methods and absolute error.

z MVIM VIM EADM Exact Error = |Exact-VIM| Error = |Exact-MVIM|

0 0.5625 0.5625 0.5625 0.562177 0.000323 0.000323
1 0.4369 0.44142 0.43809 0.437823 0.003597 0.000923
2 0.3197 0.32799 0.320934 0.320821 0.007169 0.001121
3 0.2218 0.2314945 0.222672 0.2227 0.0087945 0.0009
4 0.1475 0.156289 0.14795 0.148047 0.008242 0.000547
5 0.0950 0.1018953 0.0952425 0.0953495 0.0066528 0.0003495

Table 2: For m=1 and t=3 numerical comparison of solution with differ-
ent methods and absolute error.

z MVIM VIM EADM Exact Error = |Exact-VIM| Error = |Exact-MVIM|

0 0.6875 0.6875 0.6875 0.679179 0.008321 0.008321
1 0.55766 0.573135 0.569981 0.562177 0.010958 0.004517
2 0.430721 0.45563017 0.441954 0.437823 0.0178072 0.007102
3 0.3131944 0.34223777 0.320928 0.320821 0.0214168 0.0076266
4 0.21625566 0.24266809 0.220438 0.2227 0.01996809 0.00644434
5 0.14321004 0.1638188 0.145161 0.148047 0.0157718 0.00483696

Table 3: For m=1 and t=5 numerical comparison of solution with differ-
ent methods and absolute error.

z MVIM VIM EADM Exact Error = |Exact-VIM| Error = |Exact-MVIM|

0 0.8125 0.8125 0.8125 0.7773 0.0347 0.0347
1 0.687592 0.7099839 0.716261 0.679179 0.0308049 0.008413
2 0.5544866 0.5960 0.585689 0.562177 0.033823 0.0076904
3 0.4213869 0.4698 0.442867 0.437823 0.031977 0.0164361
4 0.3013017 0.345321 0.312916 0.320821 0.0245 0.0195193
5 0.204527 0.238875 0.2099471 0.2227 0.016175 0.018173

Table 4: For m=1 comparison of solution with numerical method FDM
and absolute error.

FDM Absolute Error
z t=1 t=3 t=5 t=1 t=3 t=5
0 0.5000 0.5000 0.5000 0.062177 0.179179 0.2773
1 0.3921 0.4023 0.4100 0.044723 0.159877 0.269179
2 0.2892 0.3053 0.3180 0.031621 0.132523 0.244177
3 0.2024 0.2189 0.2317 0.0203 0.101921 0.206123
4 0.1343 0.1448 0.1526 0.013747 0.0779 0.168221
5 0.0759 0.0751 0.0759 0.0194495 0.072947 0.1468
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Figure 2: Three dimensional behaviour of analytical approximate solu-
tion at m=1.

𝜕𝜃
𝜕𝑡 + 𝜃2 𝜕𝜃𝜕𝑧 − 𝜕2𝜃

𝜕𝑧2 = 0 (74.21)

with initial condition

𝜃(𝑧, 0) = (12 + 1
2 tanh (−𝑧

3))
0.5

(74.22)

Applying VIM in the above equation,

𝜃𝑛+1(𝑥) = 𝜃𝑛(𝑥) + ∫
𝑥

0
𝜆(𝑥) [𝜕𝜃𝑛𝜕𝑡 + 𝜃2𝑛

𝜕𝜃𝑛
𝜕𝑧 − 𝜕2𝜃𝑛

𝜕𝑧2 ] 𝑑𝜏 (74.23)

The Lagrange Multiplier can be recognized as the 𝜆 = −1 and considering an
initial condition (22) as an initial approximation

𝜃0(𝑧, 𝑡) = (12 + 1
2 tanh (−𝑧

3))
0.5

After using the initial approximation in equation we can get the approximate so-
lution is obtained as:
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𝜃(𝑧, 𝑡) = (12 + 1
2 tanh (−𝑧

3))
0.5

−
𝑡𝑠𝑒𝑐ℎ ( 𝑧

3)
4

144 (0.5 − 0.5𝑡𝑎𝑛ℎ ( 𝑧
3))

3
2

+
𝑡𝑠𝑒𝑐ℎ ( 𝑧

3)
2

24 (0.5 − 0.5𝑡𝑎𝑛ℎ ( 𝑧
3))

0.5 +
𝑡𝑠𝑒𝑐ℎ ( 𝑧

3)
2
𝑡𝑎𝑛ℎ ( 𝑧

3)
24 (0.5 − 0.5𝑡𝑎𝑛ℎ ( 𝑧

3))
0.5 + ...

Applying MVIM with the help of equation (16) in Richards’s equation (12).

where 𝜃−1 = 0, 𝜃0 = 0, 𝜃1(𝑥) = 𝜃0 − ∫𝑥0 [𝑅(𝜃0 − 𝜃−1) + (𝐺0 − 𝐺−1) − 𝑓 (𝑥)] 𝑑𝜏 and
from the equation (17) 𝐺𝑛(𝑥, 𝑡) is obtained as:

(𝜃𝑛(𝑥, 𝑡)) (𝜃𝑛(𝑥, 𝑡))𝑥 = 𝐺𝑛(𝑥, 𝑡) + 𝑂(𝑡𝑛+1)

After applying the modified formula (16), at the end it will cancelled out all the
additional recurring calculations and terms. After applying MVIM, the following
solutions are obtained.

𝜃0(𝑧, 𝑡) = (12 + 1
2 tanh (−𝑧

3))
0.5

𝜃1(𝑧, 𝑡) = 𝜃0 +
𝑡𝑠𝑒𝑐ℎ ( 𝑧

3)
4

24 (0.5 − 0.5𝑡𝑎𝑛ℎ ( 𝑧
3))

0.5 [1 −
𝑠𝑒𝑐ℎ ( 𝑧

3)
2

6 (0.5 − 0.5𝑡𝑎𝑛ℎ ( 𝑧
3))

+

𝑡𝑎𝑛ℎ ( 𝑧
3) 𝑠𝑒𝑐ℎ ( 𝑧

3)
2

3 (0.5 − 0.5𝑡𝑎𝑛ℎ ( 𝑧
3))

]

and so on.
MVIM makes a calculation faster and makes the solution in a simplified form.

Tables 5,6 and 7 display the comparison of the solution obtained by MVIM, VIM,
EADM and Exact solution with z=0,1,2,3,4 and 5 for t=1,3 and 5 . In addition, the
error between the precise solution and the solution derived using the proposed
technique MVIM and VIM is shown in the tables below. Table 8 shows the com-
parison of solution with numerical method FDM and absolute error at t=1,2,3 and
z=0,1,2,3,4 and 5 has been showed. At t=3, m=2, Figures represents the compar-
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isons of results of MVIM, VIM, EADM, and the exact solution. Figure 4 depicts
the three dimensional behaviour of an approximate solution for the proposed
method (m=2).

Table 5: For m=2 and t=1 numerical comparison of solution with differ-
ent methods and absolute error.

z MVIM VIM EADM Exact Error = |Exact-VIM| Error = |Exact-MVIM|

0 0.74639 0.7463904 0.700287 0.745203 0.0011874 0.001187
1 0.62521 0.625208 0.58141 0.625046 0.000162 0.000164
2 0.4969 0.4968988 0.465194 0.497658 0.0007592 0.000758
3 0.370469 0.37046876 0.361456 0.380234 0.00976524 0.009765
4 0.2813717 0.28137167 0.273559 0.28257 0.00119833 0.0011983
5 0.2055054 0.20550543 0.202672 0.206522 0.0010165 0.0010166

Table 6: For m=2 and t=3 numerical comparison of solution with dif-
ferent methods and absolute error.

z MVIM VIM EADM Exact Error = |Exact-MVIM| Error = |Exact-VIM|
0 0.82497 0.8249679 0.704652 0.812869 0.012101 0.0120989
1 0.710731 0.7107313 0.576126 0.707107 0.003624 0.0036243
2 0.577223 0.5772227 0.461495 0.582446 0.005223 0.0052233
3 0.446625 0.4466251 0.376334 0.456737 0.010112 0.0101119
4 0.334334 0.33433399 0.303302 0.345258 0.010924 0.01092401
5 0.245328 0.24532795 0.235861 0.254891 0.009563 0.00956305

Table 7: For m=2 and t=5 numerical comparison of solution with differ-
ent methods and absolute error.

z MVIM VIM EADM Exact Error = |Exact-VIM| Error = |Exact-MVIM|

0 0.903525 0.90352533 0.733023 0.867373 0.036152 0.03615233
1 0.7962547 0.796254662 0.566559 0.780588 0.0156667 0.01566662
2 0.6575466 0.6575466 0.430311 0.666837 0.0092904 0.0092904
3 0.5142033 0.5142033 0.367854 0.539758 0.0255547 0.0255547
4 0.3872963 0.38729633 0.322919 0.417475 0.0301787 0.03017867
5 0.2851505 0.28515047 0.267762 0.312686 0.0275355 0.02753553

4 Discussion

MVIM and VIM are effectively implemented to the Richards equation for obtain-
ing the approximate analytical solution in this work. To substantiate the approxi-
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mation solution byVIM andMVIM, for both the cases atm = 1 and 2 are compared
with the exact solution and EADM [28]. Table 4 and 8 shows the comparisonwith
the numerical method (FDM) at m=1 and 2, t=1, 3, 5. As the MVIM solution steps
in the Richards equation are compared with the EADM solution steps in [28],
from figures show that it is clear that MVIM is more efficient. Adomain polyno-
mials with six non-linear terms must be computed in EADM. These polynomials
do not need to be calculated in MVIM. When moving out from the transition
zone, all of figures 1-4 show that VIM and MVIM produce more accurate results.
Maple and MATLAB software has been used for graphical and numerical repre-
sentation. The results reported in this study, however, suggest that the VIM and
its expansion can often be implemented in several non-linear partial differential
equations. The approximate solution is converged while MVIM minimizes the
repeating of previous computations and eliminates out unnecessary terms.

Table 8: For m=2 comparison of solution with numerical method FDM
and absolute error.

FDM Absolute Error
z t=1 t=3 t=5 t=1 t=3 t=5
0 0.7071 0.7071 0.7071 0.038103 0.105769 0.160273
1 0.5901 0.5968 0.6024 0.034946 0.110307 0.178188
2 0.4707 0.4826 0.4923 0.026958 0.099846 0.174537
3 0.3617 0.3751 0.3853 0.018534 0.081637 0.154458
4 0.2690 0.2778 0.2842 0.01357 0.067458 0.133275
5 0.1856 0.1856 0.1856 0.020922 0.069291 0.127086

Figure 4: Three dimensional behavior of analytical approximate solu-
tion at m=2.
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