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ing to annotations in a dataset can lead the model to conclude with overwhelm-
ing Type I and II errors in testing and validation, causing malicious issues when
trying to tackle real world problems. To address this problem and to make our
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as it helps in expanding our sample training data and making it better and more
diversified overall. Hence, in our study, we focus on investigating the benefits of
data augmentation by analyzing pre-existing image datasets and performing aug-
mentations accordingly. Our results show that the performance and robustness of
existing state of the art (or SOTA) models can be increased dramatically without
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1    Introduction 

In the last few years, convolutional neural networks (or CNNs) [1] have been used in every field of 

image processing to outperform many state of the art (SOTA) algorithms based on classical processing 

techniques. However, one hindrance in training DCNNs [31] has always been the availability of varied 

training data. Although, for our problem in relation to drivable area segmentation for autonomous 

driving vehicles, several open-source datasets are available which contain several thousand images for 

our perusal. However, a key issue in these datasets is that there exists little variance in the overall 

contents of these training images. For our main dataset [2], which contains five thousand images, there 

is not much robustness in the variance of the data. The urban environments are not only remarkably 

similar in nature but also there is no huge shift in weather conditions including but not limited to 

weather anomalies like snow, fog, heavy to light rain, and sunshine. 

A couple of most critical requirements for a drivable area segmentation system such as ours to work 

well are precision and the ability of the system to run at real-time speed at edge computing devices 

(having limited computations). Keeping these above-mentioned critical requirements in mind, we have 

developed some strategies by which we can increase the precision of our system without increasing the 

overall computational requirement of our model by a huge margin. Following Uysal et al [3], we have 

seen that data augmentation can be an excellent method of preventing overfitting of the model to the 

training data and enhancing the metrics of a CNN network implementing segmentation of various 

kinds. Furthermore, augmentation techniques like dropout as seen in Srivastava et al [4] have been 

used for controlling the rate of fitting the model on our data which enables the model to learn more 

complex features of the images without overfitting on the limited training images. 

We have seen that the most common use of a convolutional network has been in the task of image 

classification where we output a single label per image sample. By using a clever encoder-decoder 

implementation inspired from the paper by Ronneberger et al [5], we created a lightweight fully end 

to end convolutional model which can generate a binary mask of the drivable area in an image with a 

high prediction interval, while still hypothesizing fast on a low computing strength. 

To assist in the task of feature extraction and then it's respective decoding, we introduce two structures 

in our model namely skip connections which we take inspiration from the ResNet architecture[6]and a 

dual attention module inspired by Woo et al [7]. These additions result in consistent improvement in 

segmentation task loads with minimal overheads. Our model reaches around 201 FPS on a light 

Nvidia GTX 1660ti GPU. 

In summary, our main contributions in this paper include: 

 We propose an efficient encoder-decoder network architecture called CA-UNet that can handle 

real-time drivable area detection. 

 We design ablation studies to ensure the effectiveness of our model.  

 We give a detailed study of the different augmentations we can apply on our training data to 

improve the metrics of our model without the increase of computation requirement.  

We believe this paper will provide a reference for other reliant studies in the use of augmentation and 

efficient model architectures in the domain of drivable area detection. 

1.1 Related Works 

Multiple advancements have been made related to our work in segmentation over the years. Late 2000s 

works focus on the concepts of semantic segmentation using a single monocular image, with most 
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approaches implementing the Random Decision Forest methods. In 2008, Shotton et al [8] used 

Random Decision Forests on classification of local patches based “solely on motion-derived 3D world 

structures.” Plath et al in 2009 used Conditional Random Fields (known as CRFs) [9] for fusing the 

local and global features of an image, implementing multi-class based image segmentation. Alongside, 

Sturgess et al [10] used appearance-based features and structure-from-motion (SFM) features. In 2010, 

Zhang et al [11] used Dense Depth Maps to perform semantic segmentation on urban sceneries. In 

2011, Kontschieder et al [12] implemented class labeling techniques on Random Decision Forests for 

semantic image labeling techniques. 

Most of these early papers used specially handcrafted features and kernels that were not sufficient for 

learning all aspects (both the highs and lows) of images, hindering performances of implemented 

models. From the early to mid-2010s, the focus was geared towards more convolutional neural network 

(or CNN) based architectures which performed substantially better than previously mentioned 

methods.  

In 2012, Ciresan et al [13] introduced a sliding window approach to predict the class label of each pixel, 

with a surrounding patch of that pixel being fed into the model and the predictions made on those 

patches. The system however, had some drawbacks. Firstly, the network was to be run multiple times 

for a single image depending on the numbers of patches an image is divided into causing the model to 

be extremely slow, and secondly, the patch-based system prevents the model from learning about the 

global context of the image making the model have a trade-off between accuracy and context.FCN [14] 

revolutionized this field of study with an encoder based on VGG-16 [15], with present State of the Art 

(SOTA) models still inspired by this paper by Long et al in 2015. The paper introduced the first fully 

convolutional network to semantic segmentation workloads allowing the preservation of spatial 

information in the data and reducing the computational cost in comparison to fully connected layers. 

Using a fully convolutional neural network model frees us from the constraints of image resolutions. 

However, in their architecture, even after the addition of skip connections, the model failed to infer 

properly on images of high resolutions. In 2016, Paszke et al. [16] introduced ENet, which tried to 

increase the speed of model inference by reducing the size of intermediate feature maps.In 2017, 

SegNet [17], using an encoder-decoder architecture as well, introduced the concept of unpooling layers 

for upsampling, replacing transpose convolutions. It caused an increase in model training and 

inference times while causing a decrease in model precision overall.  

In the past couple of years, several works have introduced novel improvements in overall model 

architectures. In 2018, Chen et al suggested a novel encoder-decoder model [18] for object boundary 

refinement, besides also using Atrous Spatial Pyramid Pooling (ASPP) which is an extremely helpful 

module regarding semantic segmentation for resampling feature-based layers multiple times prior to 

convolution. Then, in 2019 Tian et al [19] introduced data-dependent upsampling used for handling 

data redundancy in label space. Finally in 2020, the model prepared by Han et al [20] started the trend 

of multitask-based learning by trying to provide solutions to the tasks of edge detection and drivable 

area segmentation together into a single coupled network to reduce computation requirements. 

1.2 Some Seminal Works 

Despite the works presented above, some of the works worth mentioning separately which have had a 

massive impact in the field of image segmentation are as follows: 

1. Otsu Thresholding: [21] An algorithm used to perform image thresholding and generate binary a 

segmentation map automatically. The threshold is measured by amplifying inter-class variance. In its 

most uncomplicated way, this algorithm returns different edge data that helps separate the pixels into 

two foreground and background classes respectively. However, if the illuminations are non-uniform in 

the image, the histogram no longer stays bimodal, and thresholding becomes unsatisfactory. 
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2. Watershed algorithm: [22] An image processing method, mainly used for object segmentation 

i.e., for separating different objects in an image. Watershed Algorithm portrays high-intensity pixels as 

peaks while low-intensity pixels as valleys. This algorithm has a greater advantage over traditional 

thresholding image processing methods because Watershed Algorithm can extract each individual 

detail from the image. But noisy images can influence the segmentation in the wrong direction, because 

at each minima, a watershed is generated. 

3. U-Net: [5] Proposes encoder-decoder architecture. The encoder or contracting path captures 

context and the decoder or expanding path enables precise localization. The contracting path follows 

the architecture of a CNN, while the expanding path consists of up-convolutions; a concatenation with 

the corresponding cropped feature maps from the contracting path (skip connections) to make sure 

data is not lost. The authors have tried to build a network that can be trained from very few images and 

outperforms SOTA CNN networks at the time of authoring the paper. The only disadvantage to U-Net is 

the learning can slow down in deeper models, which might be a risk as it causes theneural network 

model to learn to discard or ignore states having abstract features. 

4. Dropout: [4] Introduces dropout as a method to prevent the model from overfitting on training 

split. Standard backpropagation methodologies learn well on the training split but do not generalize to 

unseen data. Dropout helps break this learning and helps add more randomness to the system, “making 

the presence of any particular hidden unit unreliable” [4].Therefore, the main motivation behind using 

dropout is to take a model that is sufficiently complicated which will overfit easily and perform 

repeated sampling and training of those samples. 

2 Methods  

2.1 Network Architecture 

We now describe our implemented network architecture in the following two subsections.  

2.1.1 Encoder-Decoder Architecture 

 

Fig. 1. Model architecture diagram 

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

36



The CA-UNet network architecture is shown in Figure 1. It consists of a convolutional encoding 

network on the left side of the model and another convolutional decoding network with an attention 

model present at the bottleneck. The blocks of the encoder consist of two 3x3 2D convolutions (padding 

of one and dilation of 1) each followed by a rectified linear unit (ReLUs) [32]. This structure is followed 

by a drop block of size 8x8 and a drop probability of 0.5. Then, a batch normalization [33] layer is 

added to regularize the network. For the down sampling of the feature vector, we apply a max-pooling 

operation with a kernel size of 2x2 and a stride of two. At each of the down sampling steps, we double 

the number of channels in the feature vector. Each decoder block has a single 2D transposed 

convolution that halves the number of channels in the feature vector with a kernel size of 2x2 and a 

stride of 2x2 followed by concatenation with the corresponding feature maps from the contracting path. 

Finally, at the end of the block two 3x3 convolutions, each followed by a rectified linear unit was added. 

The output lock of this model consists of a single 2D convolution layer with output a single channel 

binary segmentation map of the same resolution as the input image vector. Our output layer was 

followed by a sigmoid activation function to get the result. 

2.1.2 Bottleneck Architecture 

The concept of using “attention mechanisms” was first introduced in the field of Natural Language 

Processing (NLP) in the 2017 NeurIPS paper by Google Brain, titled "Attention Is All You Need". [23] 

Our convolutional attention bottleneck consists of two submodules: a Channel Attention Module and a 

Spatial Attention Module. Utilizing the inter-channel connection of features, a Channel Attention 

Module generates a channel attention map. Channel Attention focuses on 'what' is relevant given an 

input image since each channel of a feature map is regarded as a feature detector. We compress the 

spatial dimension of the input feature map to efficiently compute channel attention. 

We initially use both Average-pooling and Max-pooling operations to aggregate spatial information 

from a feature map, resulting in two alternative spatial context descriptors: Favgc and Fmaxc, which 

signify average-pooled features and max-pooled features, respectively. 

After that, both descriptors are sent to a common network to create our Channel Attention Map  

MC, where C is the number of channels. A convolutional multi-Layer perceptron (MLP) with one hidden 

layer makes up the shared network. The hidden activation size is set to r×1×1, to reduce parameter 

overhead, where r is the Reduction Ratio. We use element-wise summing to integrate the output 

feature vectors after applying the shared network to each descriptor. Concisely, the channel attention is 

calculated as follows: 

𝑀𝐶(𝐹) = σ (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) 

𝑀𝐶(𝐹) = σ (𝑊1 (𝑊0(𝐹𝑎𝑣𝑔𝑐)) + 𝑊1(𝑊0(𝐹𝑚𝑎𝑥𝑐))) 

where σ denotes the sigmoid function. Note that the MLP weights, W0 and W1, are shared for both 

inputs and the ReLU [32] activation function is followed by W0. 

Spatial Attention Module uses the inter-spatial relationship of features to build a spatial attention map. 

We apply a convolution layer to the concatenated feature descriptor to construct the spatial attention 

map 𝑀𝑆(𝐹) ∈ 𝑅𝐻 × 𝑊, which encodes where to emphasize or suppress.  

We use two pooling methods to aggregate channel information from a feature map, resulting in two 2D 

maps:𝐹𝑎𝑣𝑔𝑠 ∈ 𝑅1 × 𝐻 × 𝑊 and 𝐹𝑚𝑎𝑥𝑠 ∈ 𝑅1 × 𝐻 × 𝑊. In short, the spatial attention is computed as: 

𝑀𝑆(𝐹) = σ(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)])) 
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𝑀𝑆(𝐹) = σ (𝑓7×7([𝐹𝑎𝑣𝑔𝑠; 𝐹𝑚𝑎𝑥𝑠])) 

where, σ denotes the sigmoid function and 𝑓7×7represents a convolution operation with the filter size of 

7×7.  

The input in the Attention Block is first multiplied with the Channel Attention. Then the output is 

passed through Spatial Attention and then multiplied by the output of the multiplied Channel 

Attention. The final output from the Attention is added with the input like Residual blocks. The input in 

the Channel Attention is passed in two parallel streams—Max Pool and Average Pool. The two parallel 

streams are then passed through the Conv2D-ReLU-Conv2D block parallelly. The output from the 

parallel blocks is then added and passed through a sigmoid. The input in the Spatial Attention is again 

passed in two parallel streams—maximum output as dimension 1 and average output at dimension 1. 

The average and the max results are then concatenated and passed through a 7×7 Convolution. The 

final output is passed through a sigmoid activation function to bound the output mask pixel values 

within 0 to 1. 

2.2    Dataset 

2.2.1    Introduction 

The Cityscapes dataset [2] is made up of a variegated set of video-sequenced images from fifty cities in 

Europe, mostly Germany and some other cities. The resolution of each image is 2048 x 1024, with 16 

bits RGB color-depths. However, for easier usage, they also provide 8-bit RGB by introducing a log-

based compression curve to the images. The authors created a group of five thousand finely annotated 

images, with the training and validation set consisting of 3425 images, and 1525 images used for testing 

purposes. They also provide us with twenty thousand other coarsely annotated images for performing 

other training tasks if required. The pictures were captured from a moving vehicle, for several months, 

following spring, summer and fall seasonal differences. However, the author explicitly stated that the 

lack of more adverse weather conditions in the data was due to lack of more advanced resources, 

although their camera system is SOTA for automation purposes; something we try to make more varied 

by our augmentation suggestions and patterns as we will go on to mention in the paper. The 

annotations were described to consist of layered polygons and prepared in-house with the help of the 

LabelMe [24] tool.  

2.2.2    Statistical Analysis of the Dataset 

To gauge at our data set images and the masks we created, we performed some basic analysis and 

testing. Firstly, on the distribution of images and the cities they were collected from. We notice our 

training set spans across eighteen cities, our validation across three and our testing across six cities, all 

situated in Germany, while the number of images across both the actual image and mask count to 2975 

for the training, 500 for validation, and 1525 for the test images. [2]  

 

Fig. 2. City-wise Distribution of the Cityscapes Dataset  
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We moved on to conduct several hypothesis tests to understand whether our drivable vs. non-drivable 

areas might be similar across our chosen training and validation data using our self-built functions to 

help preprocess our binary mask pixel data into drivable and non-drivable count and normalize the 

numeric values while considering a significance level α =  0.05 or 5%. 

We first perform the Student’s t-test for two samples having unequal sample size, assuming similar 

variance under the null hypothesis that they have identical means, where we notice our p-values 𝑝 ≥ α 

(𝑝 =  0.2990for drivable and 𝑝 =  0.0772for non-drivable) in the case of both drivable as well as non-

drivable areas denotes our observations are unlikely to have been misinterpreted, so we reject our null 

hypothesis. We have, 

𝑡 =
�̅� − �̅�

√
(𝑥−1)𝑠𝑋

2 +(𝑦−1)𝑠𝑌
2

𝑥+𝑦−2
√

1

𝑥
−

1

𝑦

 

where 𝑡 is the t-statistic, �̅� is the sample mean of the first sample, �̅� is the sample mean of the second 

sample, 𝑠𝑋
2 is the first sample variance, 𝑠𝑌

2is the second sample variance, and 𝑥 and 𝑦are the sample 

counts of the first and second sample respectively. 

We performed the Bartlett's test next under the null hypothesis that samples are from the population 

with equal variances. The values from drivable pixels show that the observed outcome would be 

unlikely under the null hypothesis (𝑝 =  0.0086) whereas in non-drivable, they become statistically 

significant (𝑝 =  0.5466). We have, 

χ2 =
(𝑥 + 𝑦 − 2)𝑙𝑛 (

(𝑥−1)𝑠𝑋
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2))

1 +
1

3
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1

𝑥−1
+

1

𝑦−1
−

1

𝑥+𝑦−2
)

 

where χ2 is the Bartlett’s test statistic which approximates to a χ
1,0.05
2  distribution, 𝑠𝑠

2
is the first sample 

variance, 𝑠𝑠
2

is the second sample variance, and 𝑠 and 𝑠are the sample counts of the first and second 

sample, respectively. 

Next, we drew and compared the scatters for drivable vs. non-drivable areas which allows us to gauge 

at some overlying similarities between our test and validation masks which gives us some basic 

intuition on why our model performs well. 

Finally, we attempted at approximating the Jaccard Index for pixel data in masks (IOU computation). 

We consider the Jaccard coefficient 𝑠 for two samples 𝑠𝑠 and 𝑠𝑠 from sets 𝑠 (Training) and 𝑠 

(Validation) to be calculated by, 

𝑠(𝑠𝑠,𝑠𝑠) =
|𝑠𝑠 ∩𝑠𝑠|

|𝑠𝑠 ∪𝑠𝑠|
=

|𝑠𝑠 ∩𝑠𝑠|

|𝑠𝑠| + |𝑠𝑠| − |𝑠𝑠 ∩ 𝑠𝑠|
 

and the approximated index 𝑠(𝑠,𝑠) was measured by the assumption of Law of Large Numbers for 

the data (i.e., sample size of pairs chosen is large enough) and can be stated as, 

𝑠(𝑠,𝑠) = ∑ 𝑠(𝑠𝑠,𝑠𝑠)

𝑠

𝑠 =1

 =  ∑
|𝑠𝑠 ∩𝑠𝑠|

|𝑠𝑠| + |𝑠𝑠| − |𝑠𝑠 ∩ 𝑠𝑠|

𝑠

𝑠 = 1

 

We considered five hundred samples of 1 train-mask and 1 validation-mask and compute and 

approximate the index at each iteration. We notice a significantly large Jaccard Index 𝐽(𝑋, 𝑌)  =

 0.8457, which in turn helps understand why our neural network architecture learns well. 
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In Figure 3, we notice that when comparing the spreads of drivable and non-drivable regions, the 

spread of the validation masks falls mostly within the training mask, which is a good indicator how our 

model learns quickly, and within a certain number of epochs as we go on to state later. 

 

 
Fig. 3. Correlation between Drivable and Non-Drivable Area in the Dataset 

2.3    Augmentation 

Lately, Deep Learning Applications have been performing extremely well when it comes to tasks 

requiring segmentations. But, to prevent the long-lasting issue of overfitting of data due to lack of big 

datasets in multiple domains, data augmentation has become an all-round solution to tackle this. In 

our problem where we deal with the Cityscape dataset, we too have applied numerous geometric, affine, 

and pixel-level transformations to improve the overall quality of our dataset.  

Firstly, pixel level transformations like Rotation Flip, Random Crop, Random Scale, and Mix-Cut have 

been used to bring in more randomness to our dataset, while trying to see how the model learns and 

performs in overall more abstract scenarios.  

Next, we implemented the two famous augmentations CLAHE [35] and Random Gamma which have 

played a leading role in our data augmentation pipeline to remove our model's dependency on the 

quality and brightness of the original training images.  

Adaptive Histogram Equalization (AHE)is an image processing technique used to ameliorate 

contrasting in digital images, differing from the ordinary Equalization methodology in that this 

computes several histograms in which each of them corresponds to a distinct section of the image, and 

uses them to redistribute the lightness values of the image. [34]It is therefore apt for “enhancing the 

local contrast and improving the edge definitions in each region of an image.” However, AHE tends to 

“over-amplify noise in homogeneous regions of an image.” [34] 

A variant of AHE called Contrast Limited Adaptive Histogram Equalization (CLAHE) [35] prevents this 

by limiting the amplification. CLAHE has also been used for a long time. A good example includes a 

paper from 1974 for enhancing cockpit displays [25], which should also work well for the cityscape 

dataset.  

The usage of Gamma Correction [36] matters in the sense if one has any interest in displaying an image 

accurately on a computer screen as it controls the overall brightness of an image. Images which are not 

suitably gamma corrected can look either washed out or too dark. Trying to reproduce colors accurately 

also requires some knowledge of gamma. Varying the amount of gamma correction changes not only 

the brightness, but also the ratios of red to green to blue. [36] Random Gamma Augmentation plays a 

major role in increasing the variation of the dataset and considering all the possible cases, considering 
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human perception to brightness or luminance as produced by the RGB colors, with Green being the 

most luminous followed by Red and finally Blue in terms of the combined proportion as seen by human 

eye.  

Our next augmentation ColorJitter, performs similarly to CLAHE but is more random in augmenting 

the brightness, contrasts, and saturation of our dataset. A good usage of this implementation is shown 

by Simonyan et al. [15] in their 2015 paper working on large-scale image recognitions where they used 

the ImageNet dataset. Downscale is also implemented with a certain low probability as it plays around 

with image quality well.  

Following up with these augmentations, we added several blurring techniques to make realistic 

portraits bringing in a certain clumsiness and imperfections in our datasets, in the form of random 

gaussian blurs (GaussianBlur), blurring produced by glass (GlassBlur), saturations in colors 

(HueSaturation) and blurring produced by motion (MotionBlur). These would provide our dataset with 

more robustness and will make it look to be as if clicked from separate locations, be it through a closed 

glass window or a moving bicycle, or inside a car with windows drawn up portraying a mixture of both 

motion and glass blurring effects.  

We also added augmentations in forms of imperfections normally caused by a camera’s quality, like 

noises (ISONoise) which helps create noise in the dataset caused by noise created by camera sensors 

and different distortions (OpticalDistortion) like purple fringing caused by pixel-level errors. Usage of 

camera errors related augmentations were inspired by the recent paper by Ouyang et al. [26] in their 

paper related to camera simulations caused by neural networks.  

 
Figure 2. A visual representation of some of the augmentations applied 

We used Posterize to randomly reduce some bits from color channels to gauge if the model can still 

differentiate between drivable roads and lanes on the side due to reduction of color bits. 
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Finally, we saw that our dataset was monotonous in terms of the weather conditions, with the entire 

dataset being taken in perfect weather conditions. So, we included more randomness to our dataset by 

adding various weather simulations of RandomFog, RandomRain, RandomSnow, RandomSunflare so 

that we can work with a more realistic dataset giving us several different conditions and possibilities to 

choose from.  

3    Results 

To measure the performance of the CA-UNet models and its performance with added augmentations 

we have tested them on the widely used cityscape dataset. For the implementation, we have used the 

PyTorch [37] framework. The model is trained on a single GPU machine with 32GB of RAM and Nvidia 

GTX 1660ti GPU. 

3.1    Train Setting 

We chose the popular Adam optimizer with a weight decay of 0.00001 and betas of 0.9 and 0.999 

respectively as our optimizer along with Binary cross-entropy as our loss function. The model is trained 

from scratch with Kaiming Initialization. To keep the model compact and fast we sent the number of 

channels in the initial convolutional layer at 16. The learning rate is set at 0.001 for the first one 

hundred epochs, and then it is reduced to 0.0001. The drop block discard size is kept at 7 for the final 

model with a linear drop rate schedule of 0.05 to 0.25. 

3.2    Evaluation Metrics 

We have used the following metrics in our calculations: 

Accuracy: A statistic that sums up how well a model performs across all classes. It is helpful when all 

the classes are equally important. It is computed as the ratio between the number of right guesses and 

the total number of forecasts. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝑇𝑟𝑢𝑒−𝑣𝑒

𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒
 

Jaccard Index: The area of overlap between the resultant segmentation that we expect versus the 

actual truth is divided by the area of union between the predicted segmentation and the actual truth to 

get the Jaccard Index (also known as Intersection over Union or IOU). 

𝐽(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
=

|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
 

Precision: It is measured as the ratio of the number of correctly identified Positive samples to the 

total number of classified Positive samples (either correctly or incorrectly). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒+𝑣𝑒

𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒
 

Recall: It is determined by dividing the total number of Positive samples by the number of Positive 

samples accurately categorized as Positive, measuring the model's ability to recognize Positive samples. 

The higher the recall, the greater the number of positive samples found. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒+𝑣𝑒

𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒
 

Dice: It is used as a measure to gauge the similarity between two samples.  
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𝐷𝑖𝑐𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Specificity: It is a measure of the ratio of true negatives derived from a test divided by all the 

negatives in the set (including the false positives).  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒−𝑣𝑒

𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒

 

 

Matthew’s Correlation Coefficient: Also, known as the Phi Coefficient, it is appropriate for 

measurements of performancein binary classification tasksfor two categories having different data 

lengths, and can be directly derived from the values for a given confusion matrix itself. 

𝑀𝐶𝐶 =
(𝑇𝑟𝑢𝑒+𝑣𝑒 × 𝑇𝑟𝑢𝑒−𝑣𝑒) − (𝐹𝑎𝑙𝑠𝑒+𝑣𝑒 × 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒)

√(𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒) × (𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒) × (𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒) × (𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒)
 

3.3    Inference Speed Measurement 

While measuring the inference speed for the model we used a single GTX 1660ti GPU and set the batch 

size to 1. The CUDA version we have used is 10.2 while the PyTorch version is 1.1. To reduce the 

problem of occasionality, we ran the same network twenty times and calculated the average inference 

speed under the scaled input resolution of 1024 x 512 of the Cityscapes dataset. 

 

Fig. 3. Average inference times vs model runs 

As shown in figure 3the Average inference time across all the twenty model runs came up to be 0.00497 

secs per frame on a GTX  1660ti which contains 1536 Cuda cores. 

3.4    Results on City Scapes Dataset 

In this part of the paper,we demonstrate the drivable area segmentation ability of ourCA-UNetby 

comparing to other state-of-the-art models. The accuracy of CA-UNetis 98.79% on the augmented 

training data, and 97.02% on the validation data. As seen by the resultson the validation data our 

model achieves a dice score of 0.9549, a f1 score of 0.97, anJaccard Index (IoU) score of 0.914 and a 

MCC score of 0.9329. The most interesting point about our model is that the number of parameters in 

CA-UNet is much lower than other comparable CNN segmentation networks shown in table 1.  
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Table 1. Number of parameters in different model 

Models  Total Trainable Non-trainable 

AG-Net [27] 93,35,340 93,35,340 0 

DDRNet-23 [28] 20100578 20100578 0 

SegNet [17] 29502358 - - 

23 Layers U-Net 21,58,705 21,58,705 0 

18 Layers U-Net 5,35,793 5,35,793 0 

U-Net + SA 5,35,891 5,35,891 0 

SD-UNET [29] 5,35,793 5,35,793 0 

SA-UNET [30] 5,38,707 5,37,299 1408 

CA-UNet(Ours) 4,89,588 4,89,588 0 

 

Fig. 4. The PR and ROC curves on the cityscapes training and validation datasets 

As shown in Figure 4, the Receiver Operating Characteristic curve (or ROC curve) for both the training 

data and the validation data give us high AUC (Area under the curve) scores of 0.9960 and 0.9870 

respectively, indicating our model is a very capable binary classifier between drivable pixels and non-

drivable pixels in an image. Furthermore, Figure 4 also shows us the Precision-Recall curves and their 

respective AUC scores of 0.9938 and 0.9637 which quantifies our model’s ability to have a high positive 

predictive value while maintaining a high sensitivity. 
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Fig. 5. True and Predicted Segmentation Masks from our model  

 

Fig. 6. Performance metrics of the model trained till one hundred epochs 

In Figure 5, we have shown a few examples of the segmentation masks generated by our model on the 

test dataset with reference to the true binary masks. We can see that our model is giving us an accurate 

binary map of drivable area. However, in the fourth image we can see that there are some false 

positives being predicted by the model. Our model has been trained for one hundred epochs and the 

resulting performance metrics of the model during the training process has been shown in Figure 6. 

Our model reaches a high specificity score of 0.98 and IoU score of 0.95 on the training data set which 

further stands as a proof to the ability of our model to generate accurate drivable area segmentation 

masks in real time. 

3.5    Ablation Experiments 

3.5.1 Ablative Experiment of Augmentations 
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Taking inspiration from Ronneberger et al[5] andHong et al [28], we have experimented with and 

applied several forms of affine and non-affine image augmentations to our dataset to improve the 

performance of our model and make it more robust to weather and camera placement changes without 

compromising on the speed of the model. Drivable-area detection is only one of many processes 

involved in the panoptic machine vision forself-driving vehicles. Our model has been designed to run in 

tandem with other object detection and lane prediction systems while ensuring real time deductions on 

a limited computing power. Adding non-rigid transformation such as Elastic Transform and Grid 

Distortion modified the training image to scenes that was not realistically available during test time, so 

we dropped those from our augmentation pipeline. Furthermore, we performed an ablative test on our 

augmentation and found that the model drastically overfitted to light augmentations such as random 

cropping and angle rotations, within 10 epochs and gave us a accuracy of 96% on our training data set 

while implementing stronger augmentations such as random weather effects, motion blur and optical 

distortion along with the previously mentioned augmentations prevented our model from overfitting 

too quickly while giving us a model accuracy of 98.79%. In figure 7 and figure 8 we have provided an 

accuracy versus epochs trained plots for light and heavy augmentations respectively till fifty epochs on 

a smaller augmented subset of the total dataset. 

 

 

 

 

4   Conclusion 

In this paper, an extension to the exceedingly popular U-Net architecture is proposed with the addition 

of convolutional and spatial attention networks to extend the feature representation capability of the 

model, along with the use of drop block and batch normalization [33] for network regularization. The 

model has been tested rigorously on the task of drivable area detection. To reduce the over fitting of the 

model on the training data ambitions data augmentation processes has been applied. The evaluations 

done on the widely available cityscapes dataset demonstrate the effectiveness of both the attention 

module and the regularization techniques applied. The augmentations applied to the training data 

enabled the model to learn from varied training data such as obscuring weather conditions and camera 

instability. In future we would like to explore the scope of using different encoder-decoder structures 

with the same training and regularization setup.  

 

Fig. 7. Plot of accuracy vs epochs trained using 
light augmentations 

 

Fig. 8. Plot of accuracy vs epochs trained using 
heavy augmentations 
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