
Exploring the Effects of Data
Augmentation for Drivable Area
Segmentation
Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3
Heritage Institute of Technology West Bengal, India1
TiVRA-AI West Bengal, India2
The University of Hong Kong, Hong Kong3
Corresponding author: Srinjoy Bhuiya, Email: srinjoy.bhuiya.cse23@heritageit.edu.in

In solving any supervised deep learning problem related to segmentation, the suc-
cess of the model that one builds depends upon the amount and quality of input
training data we use for that model. This data should contain well-annotated var-
ied images for better working of the segmentation model. Issues like this pertain-
ing to annotations in a dataset can lead the model to conclude with overwhelm-
ing Type I and II errors in testing and validation, causing malicious issues when
trying to tackle real world problems. To address this problem and to make our
model more accurate, dynamic, and robust, data augmentation comes into usage
as it helps in expanding our sample training data and making it better and more
diversified overall. Hence, in our study, we focus on investigating the benefits of
data augmentation by analyzing pre-existing image datasets and performing aug-
mentations accordingly. Our results show that the performance and robustness of
existing state of the art (or SOTA) models can be increased dramatically without
any increase in model complexity or inference time. The augmentations decided
on and used in this paper were decided only after thorough research of several
other augmentation methodologies and strategies and their corresponding effects
that are in widespread usage today. All our results are being reported on the widely
used Cityscapes Dataset.

Keywords: Drivable-area, Segmentation, Augmentation, Deep Convolutional Neu-
ral Networks, Road Scenes, Encoder-Decoder, Pooling, Up sampling.

2021. In Prashant Singh Rana, Deepak Bhatia & Himanshu Arora (eds.),
SCRS Proceedings of International Conference of Undergraduate Students, 33–
48. Computing & Intelligent Systems, SCRS, India. https://doi.org/10.52458/
978-81-95502-01-1-5

1 Introduction

In the last few years, convolutional neural networks (or CNNs) [1] have been used in every field of

image processing to outperform many state of the art (SOTA) algorithms based on classical processing

techniques. However, one hindrance in training DCNNs [31] has always been the availability of varied

training data. Although, for our problem in relation to drivable area segmentation for autonomous

driving vehicles, several open-source datasets are available which contain several thousand images for

our perusal. However, a key issue in these datasets is that there exists little variance in the overall

contents of these training images. For our main dataset [2], which contains five thousand images, there

is not much robustness in the variance of the data. The urban environments are not only remarkably

similar in nature but also there is no huge shift in weather conditions including but not limited to

weather anomalies like snow, fog, heavy to light rain, and sunshine.

A couple of most critical requirements for a drivable area segmentation system such as ours to work

well are precision and the ability of the system to run at real-time speed at edge computing devices

(having limited computations). Keeping these above-mentioned critical requirements in mind, we have

developed some strategies by which we can increase the precision of our system without increasing the

overall computational requirement of our model by a huge margin. Following Uysal et al [3], we have

seen that data augmentation can be an excellent method of preventing overfitting of the model to the

training data and enhancing the metrics of a CNN network implementing segmentation of various

kinds. Furthermore, augmentation techniques like dropout as seen in Srivastava et al [4] have been

used for controlling the rate of fitting the model on our data which enables the model to learn more

complex features of the images without overfitting on the limited training images.

We have seen that the most common use of a convolutional network has been in the task of image

classification where we output a single label per image sample. By using a clever encoder-decoder

implementation inspired from the paper by Ronneberger et al [5], we created a lightweight fully end

to end convolutional model which can generate a binary mask of the drivable area in an image with a

high prediction interval, while still hypothesizing fast on a low computing strength.

To assist in the task of feature extraction and then it's respective decoding, we introduce two structures

in our model namely skip connections which we take inspiration from the ResNet architecture[6]and a

dual attention module inspired by Woo et al [7]. These additions result in consistent improvement in

segmentation task loads with minimal overheads. Our model reaches around 201 FPS on a light

Nvidia GTX 1660ti GPU.

In summary, our main contributions in this paper include:

 We propose an efficient encoder-decoder network architecture called CA-UNet that can handle

real-time drivable area detection.

 We design ablation studies to ensure the effectiveness of our model.

 We give a detailed study of the different augmentations we can apply on our training data to

improve the metrics of our model without the increase of computation requirement.

We believe this paper will provide a reference for other reliant studies in the use of augmentation and

efficient model architectures in the domain of drivable area detection.

1.1 Related Works

Multiple advancements have been made related to our work in segmentation over the years. Late 2000s

works focus on the concepts of semantic segmentation using a single monocular image, with most

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

34

approaches implementing the Random Decision Forest methods. In 2008, Shotton et al [8] used

Random Decision Forests on classification of local patches based “solely on motion-derived 3D world

structures.” Plath et al in 2009 used Conditional Random Fields (known as CRFs) [9] for fusing the

local and global features of an image, implementing multi-class based image segmentation. Alongside,

Sturgess et al [10] used appearance-based features and structure-from-motion (SFM) features. In 2010,

Zhang et al [11] used Dense Depth Maps to perform semantic segmentation on urban sceneries. In

2011, Kontschieder et al [12] implemented class labeling techniques on Random Decision Forests for

semantic image labeling techniques.

Most of these early papers used specially handcrafted features and kernels that were not sufficient for

learning all aspects (both the highs and lows) of images, hindering performances of implemented

models. From the early to mid-2010s, the focus was geared towards more convolutional neural network

(or CNN) based architectures which performed substantially better than previously mentioned

methods.

In 2012, Ciresan et al [13] introduced a sliding window approach to predict the class label of each pixel,

with a surrounding patch of that pixel being fed into the model and the predictions made on those

patches. The system however, had some drawbacks. Firstly, the network was to be run multiple times

for a single image depending on the numbers of patches an image is divided into causing the model to

be extremely slow, and secondly, the patch-based system prevents the model from learning about the

global context of the image making the model have a trade-off between accuracy and context.FCN [14]

revolutionized this field of study with an encoder based on VGG-16 [15], with present State of the Art

(SOTA) models still inspired by this paper by Long et al in 2015. The paper introduced the first fully

convolutional network to semantic segmentation workloads allowing the preservation of spatial

information in the data and reducing the computational cost in comparison to fully connected layers.

Using a fully convolutional neural network model frees us from the constraints of image resolutions.

However, in their architecture, even after the addition of skip connections, the model failed to infer

properly on images of high resolutions. In 2016, Paszke et al. [16] introduced ENet, which tried to

increase the speed of model inference by reducing the size of intermediate feature maps.In 2017,

SegNet [17], using an encoder-decoder architecture as well, introduced the concept of unpooling layers

for upsampling, replacing transpose convolutions. It caused an increase in model training and

inference times while causing a decrease in model precision overall.

In the past couple of years, several works have introduced novel improvements in overall model

architectures. In 2018, Chen et al suggested a novel encoder-decoder model [18] for object boundary

refinement, besides also using Atrous Spatial Pyramid Pooling (ASPP) which is an extremely helpful

module regarding semantic segmentation for resampling feature-based layers multiple times prior to

convolution. Then, in 2019 Tian et al [19] introduced data-dependent upsampling used for handling

data redundancy in label space. Finally in 2020, the model prepared by Han et al [20] started the trend

of multitask-based learning by trying to provide solutions to the tasks of edge detection and drivable

area segmentation together into a single coupled network to reduce computation requirements.

1.2 Some Seminal Works

Despite the works presented above, some of the works worth mentioning separately which have had a

massive impact in the field of image segmentation are as follows:

1. Otsu Thresholding: [21] An algorithm used to perform image thresholding and generate binary a

segmentation map automatically. The threshold is measured by amplifying inter-class variance. In its

most uncomplicated way, this algorithm returns different edge data that helps separate the pixels into

two foreground and background classes respectively. However, if the illuminations are non-uniform in

the image, the histogram no longer stays bimodal, and thresholding becomes unsatisfactory.

SCRS Proceedings of International Conference of Undergraduate Students

35

2. Watershed algorithm: [22] An image processing method, mainly used for object segmentation

i.e., for separating different objects in an image. Watershed Algorithm portrays high-intensity pixels as

peaks while low-intensity pixels as valleys. This algorithm has a greater advantage over traditional

thresholding image processing methods because Watershed Algorithm can extract each individual

detail from the image. But noisy images can influence the segmentation in the wrong direction, because

at each minima, a watershed is generated.

3. U-Net: [5] Proposes encoder-decoder architecture. The encoder or contracting path captures

context and the decoder or expanding path enables precise localization. The contracting path follows

the architecture of a CNN, while the expanding path consists of up-convolutions; a concatenation with

the corresponding cropped feature maps from the contracting path (skip connections) to make sure

data is not lost. The authors have tried to build a network that can be trained from very few images and

outperforms SOTA CNN networks at the time of authoring the paper. The only disadvantage to U-Net is

the learning can slow down in deeper models, which might be a risk as it causes theneural network

model to learn to discard or ignore states having abstract features.

4. Dropout: [4] Introduces dropout as a method to prevent the model from overfitting on training

split. Standard backpropagation methodologies learn well on the training split but do not generalize to

unseen data. Dropout helps break this learning and helps add more randomness to the system, “making

the presence of any particular hidden unit unreliable” [4].Therefore, the main motivation behind using

dropout is to take a model that is sufficiently complicated which will overfit easily and perform

repeated sampling and training of those samples.

2 Methods

2.1 Network Architecture

We now describe our implemented network architecture in the following two subsections.

2.1.1 Encoder-Decoder Architecture

Fig. 1. Model architecture diagram

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

36

The CA-UNet network architecture is shown in Figure 1. It consists of a convolutional encoding

network on the left side of the model and another convolutional decoding network with an attention

model present at the bottleneck. The blocks of the encoder consist of two 3x3 2D convolutions (padding

of one and dilation of 1) each followed by a rectified linear unit (ReLUs) [32]. This structure is followed

by a drop block of size 8x8 and a drop probability of 0.5. Then, a batch normalization [33] layer is

added to regularize the network. For the down sampling of the feature vector, we apply a max-pooling

operation with a kernel size of 2x2 and a stride of two. At each of the down sampling steps, we double

the number of channels in the feature vector. Each decoder block has a single 2D transposed

convolution that halves the number of channels in the feature vector with a kernel size of 2x2 and a

stride of 2x2 followed by concatenation with the corresponding feature maps from the contracting path.

Finally, at the end of the block two 3x3 convolutions, each followed by a rectified linear unit was added.

The output lock of this model consists of a single 2D convolution layer with output a single channel

binary segmentation map of the same resolution as the input image vector. Our output layer was

followed by a sigmoid activation function to get the result.

2.1.2 Bottleneck Architecture

The concept of using “attention mechanisms” was first introduced in the field of Natural Language

Processing (NLP) in the 2017 NeurIPS paper by Google Brain, titled "Attention Is All You Need". [23]

Our convolutional attention bottleneck consists of two submodules: a Channel Attention Module and a

Spatial Attention Module. Utilizing the inter-channel connection of features, a Channel Attention

Module generates a channel attention map. Channel Attention focuses on 'what' is relevant given an

input image since each channel of a feature map is regarded as a feature detector. We compress the

spatial dimension of the input feature map to efficiently compute channel attention.

We initially use both Average-pooling and Max-pooling operations to aggregate spatial information

from a feature map, resulting in two alternative spatial context descriptors: Favgc and Fmaxc, which

signify average-pooled features and max-pooled features, respectively.

After that, both descriptors are sent to a common network to create our Channel Attention Map

MC, where C is the number of channels. A convolutional multi-Layer perceptron (MLP) with one hidden

layer makes up the shared network. The hidden activation size is set to r×1×1, to reduce parameter

overhead, where r is the Reduction Ratio. We use element-wise summing to integrate the output

feature vectors after applying the shared network to each descriptor. Concisely, the channel attention is

calculated as follows:

𝑀𝐶(𝐹) = σ (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))

𝑀𝐶(𝐹) = σ (𝑊1 (𝑊0(𝐹𝑎𝑣𝑔𝑐)) + 𝑊1(𝑊0(𝐹𝑚𝑎𝑥𝑐)))

where σ denotes the sigmoid function. Note that the MLP weights, W0 and W1, are shared for both

inputs and the ReLU [32] activation function is followed by W0.

Spatial Attention Module uses the inter-spatial relationship of features to build a spatial attention map.

We apply a convolution layer to the concatenated feature descriptor to construct the spatial attention

map 𝑀𝑆(𝐹) ∈ 𝑅𝐻 × 𝑊, which encodes where to emphasize or suppress.

We use two pooling methods to aggregate channel information from a feature map, resulting in two 2D

maps:𝐹𝑎𝑣𝑔𝑠 ∈ 𝑅1 × 𝐻 × 𝑊 and 𝐹𝑚𝑎𝑥𝑠 ∈ 𝑅1 × 𝐻 × 𝑊. In short, the spatial attention is computed as:

𝑀𝑆(𝐹) = σ(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))

SCRS Proceedings of International Conference of Undergraduate Students

37

𝑀𝑆(𝐹) = σ (𝑓7×7([𝐹𝑎𝑣𝑔𝑠; 𝐹𝑚𝑎𝑥𝑠]))

where, σ denotes the sigmoid function and 𝑓7×7represents a convolution operation with the filter size of

7×7.

The input in the Attention Block is first multiplied with the Channel Attention. Then the output is

passed through Spatial Attention and then multiplied by the output of the multiplied Channel

Attention. The final output from the Attention is added with the input like Residual blocks. The input in

the Channel Attention is passed in two parallel streams—Max Pool and Average Pool. The two parallel

streams are then passed through the Conv2D-ReLU-Conv2D block parallelly. The output from the

parallel blocks is then added and passed through a sigmoid. The input in the Spatial Attention is again

passed in two parallel streams—maximum output as dimension 1 and average output at dimension 1.

The average and the max results are then concatenated and passed through a 7×7 Convolution. The

final output is passed through a sigmoid activation function to bound the output mask pixel values

within 0 to 1.

2.2 Dataset

2.2.1 Introduction

The Cityscapes dataset [2] is made up of a variegated set of video-sequenced images from fifty cities in

Europe, mostly Germany and some other cities. The resolution of each image is 2048 x 1024, with 16

bits RGB color-depths. However, for easier usage, they also provide 8-bit RGB by introducing a log-

based compression curve to the images. The authors created a group of five thousand finely annotated

images, with the training and validation set consisting of 3425 images, and 1525 images used for testing

purposes. They also provide us with twenty thousand other coarsely annotated images for performing

other training tasks if required. The pictures were captured from a moving vehicle, for several months,

following spring, summer and fall seasonal differences. However, the author explicitly stated that the

lack of more adverse weather conditions in the data was due to lack of more advanced resources,

although their camera system is SOTA for automation purposes; something we try to make more varied

by our augmentation suggestions and patterns as we will go on to mention in the paper. The

annotations were described to consist of layered polygons and prepared in-house with the help of the

LabelMe [24] tool.

2.2.2 Statistical Analysis of the Dataset

To gauge at our data set images and the masks we created, we performed some basic analysis and

testing. Firstly, on the distribution of images and the cities they were collected from. We notice our

training set spans across eighteen cities, our validation across three and our testing across six cities, all

situated in Germany, while the number of images across both the actual image and mask count to 2975

for the training, 500 for validation, and 1525 for the test images. [2]

Fig. 2. City-wise Distribution of the Cityscapes Dataset

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

38

We moved on to conduct several hypothesis tests to understand whether our drivable vs. non-drivable

areas might be similar across our chosen training and validation data using our self-built functions to

help preprocess our binary mask pixel data into drivable and non-drivable count and normalize the

numeric values while considering a significance level α = 0.05 or 5%.

We first perform the Student’s t-test for two samples having unequal sample size, assuming similar

variance under the null hypothesis that they have identical means, where we notice our p-values 𝑝 ≥ α

(𝑝 = 0.2990for drivable and 𝑝 = 0.0772for non-drivable) in the case of both drivable as well as non-

drivable areas denotes our observations are unlikely to have been misinterpreted, so we reject our null

hypothesis. We have,

𝑡 =
𝑋̅ − 𝑌̅

√
(𝑥−1)𝑠𝑋

2 +(𝑦−1)𝑠𝑌
2

𝑥+𝑦−2
√

1

𝑥
−

1

𝑦

where 𝑡 is the t-statistic, 𝑋̅ is the sample mean of the first sample, 𝑌̅ is the sample mean of the second

sample, 𝑠𝑋
2 is the first sample variance, 𝑠𝑌

2is the second sample variance, and 𝑥 and 𝑦are the sample

counts of the first and second sample respectively.

We performed the Bartlett's test next under the null hypothesis that samples are from the population

with equal variances. The values from drivable pixels show that the observed outcome would be

unlikely under the null hypothesis (𝑝 = 0.0086) whereas in non-drivable, they become statistically

significant (𝑝 = 0.5466). We have,

χ2 =
(𝑥 + 𝑦 − 2)𝑙𝑛 (

(𝑥−1)𝑠𝑋
2 +(𝑦−1)𝑠𝑌

2

𝑥+𝑦−2
) − ((𝑥 − 1)𝑙𝑛(𝑠𝑋

2) + (𝑦 − 1)𝑙𝑛(𝑠𝑌
2))

1 +
1

3
(

1

𝑥−1
+

1

𝑦−1
−

1

𝑥+𝑦−2
)

where χ2 is the Bartlett’s test statistic which approximates to a χ
1,0.05
2 distribution, 𝑠𝑠

2
is the first sample

variance, 𝑠𝑠
2

is the second sample variance, and 𝑠 and 𝑠are the sample counts of the first and second

sample, respectively.

Next, we drew and compared the scatters for drivable vs. non-drivable areas which allows us to gauge

at some overlying similarities between our test and validation masks which gives us some basic

intuition on why our model performs well.

Finally, we attempted at approximating the Jaccard Index for pixel data in masks (IOU computation).

We consider the Jaccard coefficient 𝑠 for two samples 𝑠𝑠 and 𝑠𝑠 from sets 𝑠 (Training) and 𝑠

(Validation) to be calculated by,

𝑠(𝑠𝑠,𝑠𝑠) =
|𝑠𝑠 ∩𝑠𝑠|

|𝑠𝑠 ∪𝑠𝑠|
=

|𝑠𝑠 ∩𝑠𝑠|

|𝑠𝑠| + |𝑠𝑠| − |𝑠𝑠 ∩ 𝑠𝑠|

and the approximated index 𝑠(𝑠,𝑠) was measured by the assumption of Law of Large Numbers for

the data (i.e., sample size of pairs chosen is large enough) and can be stated as,

𝑠(𝑠,𝑠) = ∑ 𝑠(𝑠𝑠,𝑠𝑠)

𝑠

𝑠 =1

 = ∑
|𝑠𝑠 ∩𝑠𝑠|

|𝑠𝑠| + |𝑠𝑠| − |𝑠𝑠 ∩ 𝑠𝑠|

𝑠

𝑠 = 1

We considered five hundred samples of 1 train-mask and 1 validation-mask and compute and

approximate the index at each iteration. We notice a significantly large Jaccard Index 𝐽(𝑋, 𝑌) =

 0.8457, which in turn helps understand why our neural network architecture learns well.

SCRS Proceedings of International Conference of Undergraduate Students

39

In Figure 3, we notice that when comparing the spreads of drivable and non-drivable regions, the

spread of the validation masks falls mostly within the training mask, which is a good indicator how our

model learns quickly, and within a certain number of epochs as we go on to state later.

Fig. 3. Correlation between Drivable and Non-Drivable Area in the Dataset

2.3 Augmentation

Lately, Deep Learning Applications have been performing extremely well when it comes to tasks

requiring segmentations. But, to prevent the long-lasting issue of overfitting of data due to lack of big

datasets in multiple domains, data augmentation has become an all-round solution to tackle this. In

our problem where we deal with the Cityscape dataset, we too have applied numerous geometric, affine,

and pixel-level transformations to improve the overall quality of our dataset.

Firstly, pixel level transformations like Rotation Flip, Random Crop, Random Scale, and Mix-Cut have

been used to bring in more randomness to our dataset, while trying to see how the model learns and

performs in overall more abstract scenarios.

Next, we implemented the two famous augmentations CLAHE [35] and Random Gamma which have

played a leading role in our data augmentation pipeline to remove our model's dependency on the

quality and brightness of the original training images.

Adaptive Histogram Equalization (AHE)is an image processing technique used to ameliorate

contrasting in digital images, differing from the ordinary Equalization methodology in that this

computes several histograms in which each of them corresponds to a distinct section of the image, and

uses them to redistribute the lightness values of the image. [34]It is therefore apt for “enhancing the

local contrast and improving the edge definitions in each region of an image.” However, AHE tends to

“over-amplify noise in homogeneous regions of an image.” [34]

A variant of AHE called Contrast Limited Adaptive Histogram Equalization (CLAHE) [35] prevents this

by limiting the amplification. CLAHE has also been used for a long time. A good example includes a

paper from 1974 for enhancing cockpit displays [25], which should also work well for the cityscape

dataset.

The usage of Gamma Correction [36] matters in the sense if one has any interest in displaying an image

accurately on a computer screen as it controls the overall brightness of an image. Images which are not

suitably gamma corrected can look either washed out or too dark. Trying to reproduce colors accurately

also requires some knowledge of gamma. Varying the amount of gamma correction changes not only

the brightness, but also the ratios of red to green to blue. [36] Random Gamma Augmentation plays a

major role in increasing the variation of the dataset and considering all the possible cases, considering

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

40

human perception to brightness or luminance as produced by the RGB colors, with Green being the

most luminous followed by Red and finally Blue in terms of the combined proportion as seen by human

eye.

Our next augmentation ColorJitter, performs similarly to CLAHE but is more random in augmenting

the brightness, contrasts, and saturation of our dataset. A good usage of this implementation is shown

by Simonyan et al. [15] in their 2015 paper working on large-scale image recognitions where they used

the ImageNet dataset. Downscale is also implemented with a certain low probability as it plays around

with image quality well.

Following up with these augmentations, we added several blurring techniques to make realistic

portraits bringing in a certain clumsiness and imperfections in our datasets, in the form of random

gaussian blurs (GaussianBlur), blurring produced by glass (GlassBlur), saturations in colors

(HueSaturation) and blurring produced by motion (MotionBlur). These would provide our dataset with

more robustness and will make it look to be as if clicked from separate locations, be it through a closed

glass window or a moving bicycle, or inside a car with windows drawn up portraying a mixture of both

motion and glass blurring effects.

We also added augmentations in forms of imperfections normally caused by a camera’s quality, like

noises (ISONoise) which helps create noise in the dataset caused by noise created by camera sensors

and different distortions (OpticalDistortion) like purple fringing caused by pixel-level errors. Usage of

camera errors related augmentations were inspired by the recent paper by Ouyang et al. [26] in their

paper related to camera simulations caused by neural networks.

Figure 2. A visual representation of some of the augmentations applied

We used Posterize to randomly reduce some bits from color channels to gauge if the model can still

differentiate between drivable roads and lanes on the side due to reduction of color bits.

SCRS Proceedings of International Conference of Undergraduate Students

41

Finally, we saw that our dataset was monotonous in terms of the weather conditions, with the entire

dataset being taken in perfect weather conditions. So, we included more randomness to our dataset by

adding various weather simulations of RandomFog, RandomRain, RandomSnow, RandomSunflare so

that we can work with a more realistic dataset giving us several different conditions and possibilities to

choose from.

3 Results

To measure the performance of the CA-UNet models and its performance with added augmentations

we have tested them on the widely used cityscape dataset. For the implementation, we have used the

PyTorch [37] framework. The model is trained on a single GPU machine with 32GB of RAM and Nvidia

GTX 1660ti GPU.

3.1 Train Setting

We chose the popular Adam optimizer with a weight decay of 0.00001 and betas of 0.9 and 0.999

respectively as our optimizer along with Binary cross-entropy as our loss function. The model is trained

from scratch with Kaiming Initialization. To keep the model compact and fast we sent the number of

channels in the initial convolutional layer at 16. The learning rate is set at 0.001 for the first one

hundred epochs, and then it is reduced to 0.0001. The drop block discard size is kept at 7 for the final

model with a linear drop rate schedule of 0.05 to 0.25.

3.2 Evaluation Metrics

We have used the following metrics in our calculations:

Accuracy: A statistic that sums up how well a model performs across all classes. It is helpful when all

the classes are equally important. It is computed as the ratio between the number of right guesses and

the total number of forecasts.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝑇𝑟𝑢𝑒−𝑣𝑒

𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒

Jaccard Index: The area of overlap between the resultant segmentation that we expect versus the

actual truth is divided by the area of union between the predicted segmentation and the actual truth to

get the Jaccard Index (also known as Intersection over Union or IOU).

𝐽(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
=

|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|

Precision: It is measured as the ratio of the number of correctly identified Positive samples to the

total number of classified Positive samples (either correctly or incorrectly).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒+𝑣𝑒

𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒

Recall: It is determined by dividing the total number of Positive samples by the number of Positive

samples accurately categorized as Positive, measuring the model's ability to recognize Positive samples.

The higher the recall, the greater the number of positive samples found.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒+𝑣𝑒

𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒

Dice: It is used as a measure to gauge the similarity between two samples.

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

42

𝐷𝑖𝑐𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Specificity: It is a measure of the ratio of true negatives derived from a test divided by all the

negatives in the set (including the false positives).

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒−𝑣𝑒

𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒

Matthew’s Correlation Coefficient: Also, known as the Phi Coefficient, it is appropriate for

measurements of performancein binary classification tasksfor two categories having different data

lengths, and can be directly derived from the values for a given confusion matrix itself.

𝑀𝐶𝐶 =
(𝑇𝑟𝑢𝑒+𝑣𝑒 × 𝑇𝑟𝑢𝑒−𝑣𝑒) − (𝐹𝑎𝑙𝑠𝑒+𝑣𝑒 × 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒)

√(𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒) × (𝑇𝑟𝑢𝑒+𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒) × (𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒+𝑣𝑒) × (𝑇𝑟𝑢𝑒−𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒−𝑣𝑒)

3.3 Inference Speed Measurement

While measuring the inference speed for the model we used a single GTX 1660ti GPU and set the batch

size to 1. The CUDA version we have used is 10.2 while the PyTorch version is 1.1. To reduce the

problem of occasionality, we ran the same network twenty times and calculated the average inference

speed under the scaled input resolution of 1024 x 512 of the Cityscapes dataset.

Fig. 3. Average inference times vs model runs

As shown in figure 3the Average inference time across all the twenty model runs came up to be 0.00497

secs per frame on a GTX 1660ti which contains 1536 Cuda cores.

3.4 Results on City Scapes Dataset

In this part of the paper,we demonstrate the drivable area segmentation ability of ourCA-UNetby

comparing to other state-of-the-art models. The accuracy of CA-UNetis 98.79% on the augmented

training data, and 97.02% on the validation data. As seen by the resultson the validation data our

model achieves a dice score of 0.9549, a f1 score of 0.97, anJaccard Index (IoU) score of 0.914 and a

MCC score of 0.9329. The most interesting point about our model is that the number of parameters in

CA-UNet is much lower than other comparable CNN segmentation networks shown in table 1.

SCRS Proceedings of International Conference of Undergraduate Students

43

Table 1. Number of parameters in different model

Models Total Trainable Non-trainable

AG-Net [27] 93,35,340 93,35,340 0

DDRNet-23 [28] 20100578 20100578 0

SegNet [17] 29502358 - -

23 Layers U-Net 21,58,705 21,58,705 0

18 Layers U-Net 5,35,793 5,35,793 0

U-Net + SA 5,35,891 5,35,891 0

SD-UNET [29] 5,35,793 5,35,793 0

SA-UNET [30] 5,38,707 5,37,299 1408

CA-UNet(Ours) 4,89,588 4,89,588 0

Fig. 4. The PR and ROC curves on the cityscapes training and validation datasets

As shown in Figure 4, the Receiver Operating Characteristic curve (or ROC curve) for both the training

data and the validation data give us high AUC (Area under the curve) scores of 0.9960 and 0.9870

respectively, indicating our model is a very capable binary classifier between drivable pixels and non-

drivable pixels in an image. Furthermore, Figure 4 also shows us the Precision-Recall curves and their

respective AUC scores of 0.9938 and 0.9637 which quantifies our model’s ability to have a high positive

predictive value while maintaining a high sensitivity.

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

44

Fig. 5. True and Predicted Segmentation Masks from our model

Fig. 6. Performance metrics of the model trained till one hundred epochs

In Figure 5, we have shown a few examples of the segmentation masks generated by our model on the

test dataset with reference to the true binary masks. We can see that our model is giving us an accurate

binary map of drivable area. However, in the fourth image we can see that there are some false

positives being predicted by the model. Our model has been trained for one hundred epochs and the

resulting performance metrics of the model during the training process has been shown in Figure 6.

Our model reaches a high specificity score of 0.98 and IoU score of 0.95 on the training data set which

further stands as a proof to the ability of our model to generate accurate drivable area segmentation

masks in real time.

3.5 Ablation Experiments

3.5.1 Ablative Experiment of Augmentations

SCRS Proceedings of International Conference of Undergraduate Students

45

Taking inspiration from Ronneberger et al[5] andHong et al [28], we have experimented with and

applied several forms of affine and non-affine image augmentations to our dataset to improve the

performance of our model and make it more robust to weather and camera placement changes without

compromising on the speed of the model. Drivable-area detection is only one of many processes

involved in the panoptic machine vision forself-driving vehicles. Our model has been designed to run in

tandem with other object detection and lane prediction systems while ensuring real time deductions on

a limited computing power. Adding non-rigid transformation such as Elastic Transform and Grid

Distortion modified the training image to scenes that was not realistically available during test time, so

we dropped those from our augmentation pipeline. Furthermore, we performed an ablative test on our

augmentation and found that the model drastically overfitted to light augmentations such as random

cropping and angle rotations, within 10 epochs and gave us a accuracy of 96% on our training data set

while implementing stronger augmentations such as random weather effects, motion blur and optical

distortion along with the previously mentioned augmentations prevented our model from overfitting

too quickly while giving us a model accuracy of 98.79%. In figure 7 and figure 8 we have provided an

accuracy versus epochs trained plots for light and heavy augmentations respectively till fifty epochs on

a smaller augmented subset of the total dataset.

4 Conclusion

In this paper, an extension to the exceedingly popular U-Net architecture is proposed with the addition

of convolutional and spatial attention networks to extend the feature representation capability of the

model, along with the use of drop block and batch normalization [33] for network regularization. The

model has been tested rigorously on the task of drivable area detection. To reduce the over fitting of the

model on the training data ambitions data augmentation processes has been applied. The evaluations

done on the widely available cityscapes dataset demonstrate the effectiveness of both the attention

module and the regularization techniques applied. The augmentations applied to the training data

enabled the model to learn from varied training data such as obscuring weather conditions and camera

instability. In future we would like to explore the scope of using different encoder-decoder structures

with the same training and regularization setup.

Fig. 7. Plot of accuracy vs epochs trained using
light augmentations

Fig. 8. Plot of accuracy vs epochs trained using
heavy augmentations

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

46

References

[1] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document

recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:

10.1109/5.726791.

[2] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and

Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[3] Uysal, E. S., Bilici, M. S., Zaza, B. S., Ozgenc, M. Y., and Boyar, O. (2021). Exploring the Limits of Data

Augmentation for Retinal Vessel Segmentation.

[4] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research.

[5] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image

Segmentation. International Conference on Medical Image Computing and Computer Assisted

Intervention (MICCAI).

[6] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[7] Woo, S., Park, J., Lee, J., and Kweon, I. S. (2018).CBAM: Convolutional Block Attention Module.

European Conference on Computer Vision (ECCV).

[8] Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic Texton Forests for Image Classification and

Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9] Plath, N., Toussaint, M., and Nakajima, S. (2009). Multi-class Image Segmentation using Conditional

Random Fields and Global Classification. International Conference on Machine Learning (ICML).

[10] Sturgess, P., Alahari, K., Ladicky, L., and Torr, P.H.S. (2009). Combining Appearance and Structure from

Motion Features for Road Scene Understanding.

[11] Zhang, C., Wang, L., and Yang, R. (2010). Semantic Segmentation of Urban Scenes using Dense Depth

Maps. European Conference on Computer Vision (ECCV).

[12] Kontschieder, P., Bulo, S. R., Bischof, H., and Pellilo, M. (2011). Structured Class-Labels in Random

Forests for Semantic Image Understanding. International Conference on Computer Vision (ICCV).

[13] Ciresan, D., Giusti, A., Gambardella, L.M., and Schmidhuber, J. (2013). Mitosis Detection in Breast

Cancer Histology Images using Deep Neural Networks. International Conference on Medical Image

Computing and Computer Assisted Intervention (MICCAI).

[14] Long, J., Shelhamer, E., and Darrel, T. (2015). Fully Convolutional Networks for Semantic Segmentation.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15] Simonyan, K., and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image

Recognition. ImageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014).

[16] Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E. (2016). ENet: A Deep Neural Network Architecture

for Real-Time Semantic Segmentation.

[17] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence

(IEEE PAMI).

[18] Chen, L., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-Decoder with Atrous

Separable Convolution for Semantic Image Segmentation. European Conference on Computer Vision

(ECCV).

[19] Tian, Z., He, T., Shen, C., and Yan, Y. (2019). Decoders Matter for Semantic Segmentation: Data-

Dependent Decoding Enables Flexible Feature Aggregation. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[20] Han, H.-Y., Chen, Y.-C., Hsiao, P.-Y., and Fu, L.-C. (2020). Using Channel-Wise Attention for Deep CNN

based Real-Time Semantic Segmentation with Class-Aware Edge Information,” IEEE Transactions on

Intelligent Transportation Systems.

[21] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on

Systems, Man, and Cybernetics.

[22] Najman, L., and Schmitt, M. (1994). Watershed of a continuous function. Signal Processing (Special issue

on Mathematical Morphology).

SCRS Proceedings of International Conference of Undergraduate Students

47

[23] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.

(2017). Attention is All You Need. Conference on Neural Information Processing Systems (NeurIPS).

[24] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W.T. (2008). LabelMe: A database and web-

based tool for image annotation. International Journal of Computer Vision.

[25] Ketcham, D. J., Lowe, R. W., and Weber, J. W. (1974). Image Enhancement Techniques forCockpit

Displays. National Technical Information Service.

[26] Ouyang, H., Shi, Z., Lei, C., Law, K. L., and Chen, Q. (2021). Neural Camera Simulators. International

Conference on Computer Vision and Pattern Recognition (CVPR).

[27] Zhang, S., Fu, H., Yan, Y., Zhang, Y., Wu, Q., Yang, M., Tan, M., and Xu, Y. (2019). Attention Guided

Network for Retinal Image Segmentation. International Conference on Medical Image Computing and

Computer Assisted Intervention (MICCAI).

[28] Hong, Y., Pan, H., Sun, W., and Jia, Y. (2021). Deep Dual-resolution Networks for Real-time and Accurate

Semantic Segmentation of Road Scenes.

[29] Guo, C.,Szemenyei, M., Pei, Y.,Yi,Y.,and Zhou, W. (2019). SD-Unet: A Structured Dropout U-Net for

Retinal Vessel Segmentation. IEEE International Conference on Bioinformatics and Bioengineering

(BIBE).

[30] Guo, C., Szemenyei, M., Yi, Y., Wang, W., Chen, B., and Fan, C. (2020). SA-UNet: Spatial Attention U-Net

for Retinal Vessel Segmentation (Version 3).

[31] Krizhevsky, A.,Sutskever, I.,and Hinton, G. (2012). ImageNet Classification with Deep Convolutional

Neural Networks. Conference onNeural Information Processing Systems (NeurIPS).

[32] Nair, V., and Hinton, G. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines Vinod

Nair. Proceedings of International Conference on Machine Learning (ICML).

[33] Ioffe, S., andSzegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift.

[34] Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., terHaarRomeny, B.,

Zimmerman, J. B., andZuiderveld, K. (1987). Adaptive histogram equalization and its Variations. In

Computer Vision, Graphics, and Image Processing (ICGVIP).

[35] Pizer, S. M., Johnston, R. E., Ericksen, J. P., Yankaskas, B. C., and Muller, K. E. (1990). Contrast-Limited

Adaptive Histogram Equalization: Speed and Effectiveness. International Conference on Visualization in

Biomedical Computing (VBC).

[36] Smith, A. (1995). Gamma Correction. Technical Memo 9.

[37] Paszke, A., Gross, S., Massa, F.,Lerer, A., Bradbury, J.,Chanan, G., Killeen, T., Lin, Z.,Gimelshein,

N.,Antiga, L.,Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,Tejani, A.,Chilamkurthy, S.,

Steiner, B., Fang, L.,andChintala, S. (2019). PyTorch: an imperative style, high-performance deep

learning library. Conference on Neural Information Processing Systems (NeurIPS).

Srinjoy Bhuiya1, Ayushman Kumar2, Sankalok Sen3

48

