
CONCISE: An Algorithm for Mining
Positive and Negative Non-Redundant
Association Rules
Bemarisika Parfait
Laboratoire de Mathmatiques et Informatique de l’ENSET

Totohasina André
Laboratoire deMathématiques et Informatique de l’ENSET, Université d’Antsiranana,
Madagascar
Corresponding author: Bemarisika Parfait Email: bemarisikap7@yahoo.fr

One challenge problem in association rules mining is the huge size of the extracted
rule set many of which are uninteresting and redundant. In this paper, we propose
an efficient algorithm Concise for generating all non-redundant positive and neg-
ative association rules. We first introduce an algorithm CMG (Closed, Maximal
and Generators) for mining all frequent closed, maximal and their generators item-
sets from large transaction databases. We then define four new bases representing
non-redundant association rules from these frequent itemsets. We prove that these
bases significantly reduce the number of extracted rules. We show the efficiency of
our algorithm by computational experiments compared with existing algorithms.

Keywords: Association rules, Interesting rules, Non-Redundant rules

1 Introduction and Motivations

Positive and negative association rules (PNAR) mining is one of fundamental
problems in data mining. Let 𝑋 and 𝑌 be two disjoints itemsets of database ,
an association rule 𝑋 → 𝑌 states that a significant proportion in this database
containing items in the premise (or antecedent) 𝑋 also contain items in the con-
sequent (or conclusion) 𝑌 . This rule can indicate the positive relations between

2021. In Raju Pal & Praveen K. Shukla (eds.), SCRS Conference Proceedings
on Intelligent Systems, 13–34. Computing & Intelligent Systems, SCRS, India.
https://doi.org/10.52458/978-93-91842-08-6-2

Bemarisika Parfait & Totohasina André

different items, is called a positive association rule (PAR) in . The association
rules at other three forms 𝑋 → 𝑌 , 𝑋 → 𝑌 and 𝑋 → 𝑌 , which can indicate
the negative relations between items in database, are called negative association
rules (NAR).
One big problem in association rules mining is the huge number of association

rules generated many of which are uninteresting and redundant. An association
rule is said to be uninteresting if its premise and its consequent are negatively
dependent or statistically independent (even close to independence). It is said
to be non-redundant association rules (or informative rules) if its premise (resp.
consequent) is minimal (resp. maximal). Many approaches [1], [2], [3], [4], [5]
based on traditional measure confidence [6], has been developed for reducing
the size of the extracted rule set. However, no method to prune uninteresting
association rules (UAR) has been found in the literature. Indeed, this classic mea-
sure confidence is not efficient to prune uninteresting rules. In addition, these
approaches are insufficient, because they consider only the positive association
rules, and this, with less selective pair support-confidence. Therefore, discover-
ing NAR, which can be interest to several domains [7], [8, 9], [10], [11] such as
Artificial Intelligence, Machine Learning, Data Mining, Big Data, Visualization,
etc, is much more less developed than PAR due to the significant problem com-
plexity caused by high computational cost and huge search space in calculating
NAR candidates.
In this article, we propose a Concise algorithm to extract the set of non-redundant

positive and negative association rules. Indeed, 1) we define CMG algorithm. 2)
We propose a new model for sectioning significant rules. 3) We propose an effi-
cient strategy to prune the UARs using 𝑀𝐺𝐾 [12]. 4) We propose a new method
to prune the redundant rules.
The rest of this paper is organized as follows. Section 2 introduces preliminar-

ies. The Concise algorithm is described in Section 3. Section 4 shows the results
of computational experiments. Section 5 concludes this paper.

2 Basic Concepts

A database (cf. Table 1) is a triplet = (, ,). and are finite sets of transactions
and items respectively. ⊆ × is a binary relation between and . Let 𝑋 ⊆, 𝑋 = {𝑡 ∈
|∃𝑖 ∈ 𝑋 ∶ (𝑖, 𝑡) ∉} is a complementary set of 𝑋 (i.e. \𝑋). A subset 𝑋 ⊆ with

𝑘 = |𝑋 | is called 𝑘-itemset, where |ℓ| denotes the cardinality of ℓ. For example,
𝐴 (resp. 𝐴𝐵) is a 1-itemset (resp. 2-itemset). We write 2 (resp. 2) to denote the
set of all subsets of (resp. the set of all subsets of). For 𝐼 ⊆ and 𝑇 ⊆, we define

14

SCRS Conference Proceedings on Intelligent Systems (2021)

Table 1: Database

TID Items
1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE
6 BCE

the two functions 𝜙 and 𝜓 . Given 𝐼 ∈ 2 and 𝑇 ∈ 2: 2 → 2, 𝜙(𝐼) = 𝐼 ′ = {𝑡 ∈
|𝑖𝑡 , ∀𝑖 ∈ 𝐼 } and 2 → 2, 𝜓 (𝑇) = 𝑇 ′ = {𝑖 ∈ |𝑖𝑡 , ∀𝑡 ∈ 𝑇 }. The couple (𝜙, 𝜓) is a Galois
connection [13] between the partial orders (2, ⊆) and (2, ⊆). 𝛾 = 𝜓𝑜𝜙 and ̃𝛾 = 𝜙𝑜𝜓
are Galois closure operators. Given 𝑋 ⊆, 𝑋 is closed iff 𝑋 = 𝛾(𝑋); its support
is given 𝑠𝑢𝑝𝑝(𝑋) = 𝑃(𝑋 ′) = |𝜙(𝑋)|

|| where 𝑃 is a discrete probability. It is given

as 𝑠𝑢𝑝𝑝(𝑋) = 𝑠𝑢𝑝𝑝(𝛾 (𝑋)). If 𝑋 ⊆ 𝑌 , then 𝜙(𝑋) ⊇ 𝜙(𝑌). Let 𝑚𝑖𝑛𝑠𝑢𝑝 ∈]0, 1], 𝑋
is frequent if 𝑠𝑢𝑝𝑝(𝑋) ⩾ 𝑚𝑖𝑛𝑠𝑢𝑝. We define the set of all frequent itemset as
= {𝑋 ⊆ |𝑠𝑢𝑝𝑝(𝑋) ⩾ 𝑚𝑖𝑛𝑠𝑢𝑝}. 𝑋 and 𝑌 are said to be equivalent, denoted by
𝑋 ≅ 𝑌 , iff 𝛾 (𝑋) = 𝛾(𝑌). The set of itemsets that are equivalent to 𝑋 is defined as
[𝑋] = {𝑌 ⊆ | 𝑋 ≅ 𝑌 }.
Let𝑚𝑖𝑛𝑠𝑢𝑝 ∈]0, 1], we define the set of all frequent closeds (Pasquier et al. [3,4])

as :
= {∈ | = 𝛾(), 𝑠𝑢𝑝𝑝() ⩾ 𝑚𝑖𝑛𝑠𝑢𝑝} (2.1)

𝐺 is said to be generator of closed iff 𝛾 (𝐺) = and ∄𝑔 ⊆ with 𝑔 ⊆ 𝐺 such that
𝛾 (𝑔) =. Let 𝑚𝑖𝑛𝑠𝑢𝑝 ∈]0, 1], the set of all frequent generators (Pasquier et al. [3,4])
is defined as :

= {𝐺 ∈ []| ∈ , ∄𝑔 ⊂ 𝐺, 𝑠𝑢𝑝𝑝(𝐺) ⩾ 𝑚𝑖𝑛𝑠𝑢𝑝} (2.2)

Let be the set of all closed. We define the set of all maximal frequent
[14], [15], [16] as:

= {∈ | ∄ ̃ ⊃, ̃ ∈ } (2.3)

The support, confidence (Agrawal and Srikant [6]) and 𝑀𝐺𝐾 [12] of an as-

sociation rule 𝑋 → 𝑌 are respectively defined as : 𝑠𝑢𝑝𝑝(𝑋 ∪ 𝑌) = |𝜙(𝑋∪𝑌)|
|| ,

15

Bemarisika Parfait & Totohasina André

𝑐𝑜𝑛𝑓 (𝑋 → 𝑌) = 𝑃(𝑌 ′|𝑋 ′) and

𝑀𝐺𝐾 (𝑋 → 𝑌) = {
𝑃(𝑌 ′|𝑋 ′)−𝑃(𝑌 ′)

1−𝑃(𝑌 ′) , if 𝑃(𝑌 ′|𝑋 ′) > 𝑃(𝑌 ′)
𝑃(𝑌 ′|𝑋 ′)−𝑃(𝑌 ′)

𝑃(𝑌 ′) , if 𝑃(𝑌 ′|𝑋 ′) ⩽ 𝑃(𝑌 ′)
(2.4)

𝑀𝐺𝐾 varies in [−1, +1]. It can be negative if 𝑋 and 𝑌 are negatively dependent.
Otherwise, 𝑀𝐺𝐾 (𝑋 → 𝑌) > 0 and quantifies the degree of positive dependence
between these patterns. It equals -1 in repulsion limit between 𝑋 and 𝑌 , passes to
0 at independence between 𝑋 and 𝑌 (𝑃(𝑌 ′|𝑋 ′) = 𝑃(𝑌 ′)), and runs to 1 at logical
implication between 𝑋 and 𝑌 (i.e. 𝑋 ′ ⊂ 𝑌 ′).

3 Concise Algorithm

Concise algorithm will divided into two steps: (𝑖)Mining all frequent closed, fre-
quent maximal and their generators, and infrequent minimal itemsets, (𝑖𝑖) Gener-
ating all valid positive and negative rules from these frequent sets. Certain proofs
of the Properties are omitted, for lack of space.

3.1 Mining all frequent itemsets

Our strategy for mining frequent itemsets will be synthesized in the main algo-
rithm, called CMG (Algorithme 1).

This algorithm takes as input a database and a minimum support𝑚𝑖𝑛𝑠𝑢𝑝. It re-
turns the frequent closed,maximal and their generators using two sub-procedures
(lines 17 and 18). CMG algorithm is a level-wise procedure for searching space.
First, it finds all frequent itemsets using the EOMF algorithm [17] (line 2). It then
verifies, for each 𝑘-frequent itemset (𝑘 ≥ 2), if it is a closed by examining the
supports of all its subsets of size 𝑘 − 1. Two boolean variables key and closed
are then used to identify whether an itemset is a generator itemset or a closed.
If 𝑘 is empty and 𝑘−1 is nonempty, the elements of 𝑘−1 are closed and the 𝑘𝑒𝑦
is a generator (lines 16 and 18). Conversely, if 𝑘 is nonempty and 𝑘−1 is empty,
all itemsets in 𝑘 are generators, and no extra step is needed as all itemsets are
initially marked as generators.
An itemset 𝑞 is identified as a generator during steps 8-15. If the support of 𝑞

is the same as that of one of its subsets having length 𝑘 − 1 in 𝑘−1, then 𝑞 is not
a generator, and conversely, it is not a closed. In steps 16 and 20, all the closed
itemsets of length 𝑘 − 1 are added to the set 𝑘−1. Step 25 discovers the set of
maximum length closures. In steps 17, 21 and 26, the GenMaximal procedure is

16

SCRS Conference Proceedings on Intelligent Systems (2021)

Algorithm 1 CMG
Require: Database , minimum support threshold 𝑚𝑖𝑛𝑠𝑢𝑝 ∈]0, 1].
Ensure: = ⟨𝐶𝑙𝑜𝑠𝑒𝑑, 𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑆𝑢𝑝𝑝⟩ // Frequent closed, maximal and their generators/sup-

ports.
1: ← ∅; ← ∅; ← ∅; ← ∅; .𝑆𝑢𝑝𝑝𝑜𝑟 𝑡 ← 0;
2: ← 𝐸𝑂𝑀𝐹(, 𝑚𝑖𝑛𝑠𝑢𝑝𝑝) // = {1,2 , … ,ℓ }, where ℓ is the size of largest frequent itemset.
3: for (each itemset ℎ ∈ 1) do
4: ℎ.𝑘𝑒𝑦 ← 𝑡𝑟𝑢𝑒; ℎ.𝑐𝑙𝑜𝑠𝑒𝑑 ← 𝑡𝑟𝑢𝑒;
5: end for
6: for all (𝑘 ← 2; 𝑘 ≤ ℓ; 𝑘 + +) do
7: if (𝑘 ≠ ∅) then
8: for (each itemset ℎ ∈ 𝑘) do
9: ℎ.𝑘𝑒𝑦 ← 𝑡𝑟𝑢𝑒; ℎ.𝑐𝑙𝑜𝑠𝑒𝑑 ← 𝑡𝑟𝑢𝑒;
10: for all (subset ℎ̃ ∈ 𝑘−1 of ℎ) do
11: if (𝑠𝑢𝑝𝑝(ℎ̃) == 𝑠𝑢𝑝𝑝(ℎ)) then
12: ℎ.𝑘𝑒𝑦 ← 𝑓 𝑎𝑙𝑠𝑒; ℎ̃.𝑐𝑙𝑜𝑠𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒;
13: end if
14: end for
15: end for
16: 𝑘−1 ← {ℎ ∈𝑘−1 |ℎ.𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒};
17: GenMaximal(𝑘−1,𝑘);
18: GenGenerators(𝑘−1,𝑘);
19: else
20: 𝑘−1 ← {ℎ ∈𝑘−1 |ℎ.𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒};
21: GenMaximal(𝑘−1);
22: GenGenerators(𝑘−1);
23: end if
24: end for
25: 𝑘 ←𝑘 ;
26: GenMaximal(𝑘);
27: GenGenerators(𝑘);
28: ← ⋃𝑘

𝑗=1{ 𝑗 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑗 .𝐶𝑙𝑜𝑠𝑒𝑑, 𝑗 .𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝑗 .𝑆𝑢𝑝𝑝𝑜𝑟 𝑡};

called to generate the maximal itemsets. It takes the set 𝑘 as input. For each

Algorithm 2 Procedure GenMaximal(𝑘)
Require: 𝑘 // Frequent closed itemset of size 𝑘.
Ensure: Assign the maximal to each closed itemsets of 𝑘 .
1: for (each itemset ℎ ∈ 𝑘) do
2: if (∄ℎ̃ ⊃ ℎ|ℎ̃.𝑚𝑎𝑥𝑖𝑚𝑎𝑙 = 𝑡𝑟𝑢𝑒) then
3: ← ∪ {ℎ};
4: end if
5: end for

closed itemset ℎ, it verifies if there is no other closed ℎ̃ containing ℎ such that
ℎ̃ is maximal itemset (line 2 of the GenMaximal procedure). If this is the case,
the closed itemset ℎ is maximal, then added also in the set of maximal . At

17

Bemarisika Parfait & Totohasina André

steps 18, 22 and 27, the GenGenerators procedure is called in order to update the
global list of generators and to assign these generators to the respective sets of
closed (or maximal) itemsets. It takes the set 𝑘 as input. For each closed 𝑐, its

Algorithm 3 Procedure GenGenerators(𝑘)
Require: 𝑘 // Frequent closed itemset of size 𝑘.
Ensure: Assign the generators to each closed itemsets of 𝑘 .
1: for (each itemset 𝑐 ∈ 𝑘) do
2: for all (subset ̃𝑐 ∈ of 𝑐) do
3: add ̃𝑐 in 𝑐.generator;
4: end for
5: end for
6: ← ∪ {ℎ ∈𝑘 |ℎ.𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑡𝑟𝑢𝑒 ∧ ℎ.𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒 ∧ ℎ.𝑚𝑎𝑥𝑖𝑚𝑎𝑙 = 𝑓 𝑎𝑙𝑠𝑒};

proper subsets in the global set of generators are then removed and added to
the generators of 𝑐 (steps 1-5 of the GenGenerators procedure). This procedure
updates the global set of generators by the itemsets, which are not closed but
are generators before the starting of the next iteration. If the set of generators
of a given closed itemset is empty, it then indicates that the closed itemset is
the generator of itself (so it is the only pattern in its equivalence class). Figure 1
illustrates the running of the CMG algorithm with the database of Table 1 and a
minimum support 𝑚𝑖𝑛𝑠𝑢𝑝 = 2/6.

1 1
5*Scan Generator Closed Maximal Supp 5*Prune infreq. Generator Closed Maximal Supp

A AC - 3/6 A AC - 3/6
B BE - 5/6 B BE - 5/6

⟶ C C - 5/6 ⟶ C C - 5/6
D ACD - 1/6
E BE - 5/6 E BE - 5/6

2 2
4*Scan Generator Closed Maximal Supp 4*Prune infreq. Generator Closed Maximal Supp

AB ABCE ABCE 2/6 AB ABCE ABCE 2/6
AE ABCE ABCE 2/6 AE ABCE ABCE 2/6

⟶ BC BCE - 4/6 ⟶ BC BCE - 4/6
CE BCE - 4/6 CE BCE - 4/6

Figure 1: List of frequent closed, maximal and their generators with
𝑚𝑖𝑛𝑠𝑢𝑝 = 2/6

3.2 Generating valid association rules

We first present our model for selecting a valid association rule in database . It
is thus a question of observing some transactions in containing 𝑋 and not 𝑌
without having the general tendency to have 𝑌 when 𝑋 is present contested.
The aim is to control the degree of implication of 𝑋 → 𝑌 . To do this, we adopt a

18

SCRS Conference Proceedings on Intelligent Systems (2021)

model similar to the one proposed in [18] but with another measure 𝑀𝐺𝐾 . This
consists to quantify the number of counterexamples 𝑛𝑋∧𝑌 under the hypothesis
𝐻0 of independence between 𝑋 and 𝑌 . Let us note by 𝑚𝑔𝑘 the value estimated by
𝑀𝐺𝐾 , and by Φ the distribution function of the standardized normal distribution
(0, 1). Such a rule 𝑋 → 𝑌 is statistically valid [19] at risk 𝛼 ∈]0, 1] if and only if :

𝑝𝑋𝑌 = 𝑚𝑔𝑘(𝑋 , 𝑌) = 1 − Φ(−𝑚𝑔𝑘(𝑋 , 𝑌)) ≥ 1 − 𝛼 (2.5)

We nowpresent our strategy to eliminate uninteresting association rules (UARs).
We recall that an association 𝑋 → 𝑌 is said to be uninteresting rule if 𝑌 is inde-
pendent on 𝑋 (i.e. 𝑃(𝑌 ′|𝑋 ′) = 𝑃(𝑌 ′)) or if 𝑌 is negatively dependent on 𝑋 (i.e.
𝑃(𝑌 ′|𝑋 ′) < 𝑃(𝑌 ′)). Notice that the classic support-confidence [6] can return the
all UARs. For this, we use 𝑀𝐺𝐾 . Table 2 below illustrates not only the discrim-
inating power of 𝑀𝐺𝐾 but also the limits of support-confidence. The informa-

Table 2: Contingency table for (A,B) and (tea, coffee)

A ¬𝐴 ∑ coffee ¬coffee ∑
B 72 18 90 tea 20 5 25
¬𝐵 8 2 10 ¬tea 70 5 75
∑ 80 20 100 ∑ 90 10 100

tion given in this Table 2 can be used to evaluate the association 𝐴 → 𝐵 and
tea → coffee. For the (𝐴, 𝐵), we have 𝑠𝑢𝑝𝑝(𝐴∪𝐵) = 0.72 and 𝑐𝑜𝑛𝑓 (𝐴 → 𝐵) = 0.9.
For the (tea,coffee), we have 𝑠𝑢𝑝𝑝(tea∪coffee) = 0.2 and 𝑐𝑜𝑛𝑓 (tea → coffee) = 0.8.
The support and the confidence are considered fairly high for both rules. How-
ever, 𝑃(𝐵′|𝐴′) = 𝑃(𝐵′) = 0.9 ⇒ 𝑀𝐺𝐾 (𝐴 → 𝐵) = 0 means that 𝐵 is independent
on 𝐴. This proves that 𝐴 → 𝐵 is not pertinent rule. We also get 𝑐𝑜𝑛𝑓 (tea →
coffee) = 0.8 < 0.9 = 𝑠𝑢𝑝𝑝(coffee) ⇒ 𝑀𝐺𝐾 (tea → coffee) < 0 implies that tea
disfavors coffee, this proves that tea → coffee is an UAR. As a result that, by
using the 𝑀𝐺𝐾 measure, the UARs are systematically eliminated.
Very often, the response time of mining rules is not always better when the

database is dense. For this, we adopt a pruning reduce-rules-space procedure [20,
21]. The challenge of this procedure is to reduce the number of rules without
loss of information. Given 𝒞 = {𝑋 → 𝑌 , 𝑌 → 𝑋, 𝑋 → 𝑌 , 𝑌 → 𝑋, 𝑋 → 𝑌 , 𝑋 →
𝑌 , 𝑌 → 𝑋, 𝑌 → 𝑋} a set of global candidates, our method consists to divide 𝒞 in
possible subsets according to the dependence between 𝑋 and 𝑌 . We then seek,
for each subset, a member subset which can call on orginal members. Indeed, we
demonstrated that 𝑀𝐺𝐾 (𝑋 → 𝑌) = −𝑀𝐺𝐾 (𝑋 → 𝑌), ∀𝑋 , 𝑌 ⊆ [20]. As result, if
𝑋 → 𝑌 is interesting, then 𝑋 → 𝑌 cannot be interesting. This divides 𝒞 into 2
disjoint subsets 𝒞1 = {𝑋 → 𝑌 , 𝑌 → 𝑋, 𝑋 → 𝑌 , 𝑌 → 𝑋} and 𝒞2 = {𝑋 → 𝑌 , 𝑋 →

19

Bemarisika Parfait & Totohasina André

𝑌 , 𝑌 → 𝑋, 𝑌 → 𝑋}. In 𝒞1, we demonstrated that 𝑀𝐺𝐾 (𝑋 → 𝑌) = 𝑀𝐺𝐾 (𝑌 → 𝑋),
𝑀𝐺𝐾 (𝑌 → 𝑋) = 𝑀𝐺𝐾 (𝑋 → 𝑌), and 𝑀𝐺𝐾 (𝑋 → 𝑌) ≤ 𝑀𝐺𝐾 (𝑌 → 𝑋), ∀𝑋 , 𝑌 ⊆
such that ∀𝑋 ⊆ 𝑌 . From these 3 relations, we can deduce that 𝑌 → 𝑋 , 𝑋 → 𝑌
and 𝑌 → 𝑋 can be derived from 𝑋 → 𝑌 . In 𝒞2, we established 𝑀𝐺𝐾 (𝑋 → 𝑌) =
𝑀𝐺𝐾 (𝑌 → 𝑋),𝑀𝐺𝐾 (𝑋 → 𝑌) = 𝑀𝐺𝐾 (𝑌 → 𝑋) and𝑀𝐺𝐾 (𝑋 → 𝑌) ≤ 𝑀𝐺𝐾 (𝑋 → 𝑌),
∀𝑋 , 𝑌 ⊆. From these 3 relations, we can deduce that 𝑋 → 𝑌 , 𝑌 → 𝑋 and 𝑌 → 𝑋
are derivable from 𝑋 → 𝑌 . This notes that two rules 𝑋 → 𝑌 and 𝑋 → 𝑌 are
sufficient to study the global set 𝒞 of rules. This gives 100(8-2)/8=75% reductions
of space complexities.
We now present our method for pruning redundant rules. A rule 𝑟1 ∶ 𝑋1 → 𝑌1

is said to be redundant if there exists a rule 𝑟2 ∶ 𝑋2 → 𝑌2, where 𝑋1 ⊃ 𝑋2, 𝑌1 ⊂ 𝑌2
such that 𝑠𝑢𝑝𝑝(𝑟1) = 𝑠𝑢𝑝𝑝(𝑟2) and 𝑀𝐺𝐾 (𝑟1) = 𝑀𝐺𝐾 (𝑟2). We then exploit the
concept of minimal base of rules. Let 𝑅 be a set of rules, and a basis of 𝑅. is said
to be minimal if there is no subset ′ ⊂ such that ′ is a basis of 𝑅. Corresponding
to popular approaches [22], [4], [5], we define 4 bases (Definitions 3.2, 3.2, 3.2)
based on the two rules 𝑋 → 𝑌 and 𝑋 → 𝑌 as retained in the previous paragraph.
Then, we show that these bases are non-redundant (Theorems 3.2, 3.2, 3.2, 3.2).

[𝐶𝐵𝐸+ Basis] Let be the set of frequent closed itemsets. For each ∈ , let
be the set of minimal generators of , we have:

𝐶𝐵𝐸+ = {𝐺 → \𝐺 | 𝐺 ∈, ∈ , 𝐺 ≠} (2.6)

(i) All valid positive exact rules can be derived from to 𝐶𝐵𝐸+ basis. (ii) All rules
in 𝐶𝐵𝐸+ are non-redudant exact rules.
(𝑖) Let 𝑟1 ∶ 𝑋1 → 𝑌1\𝑋1 be the exact positive rule (i.e. 𝑀𝐺𝐾 (𝑟1) = 1) between

two frequents 𝑋1 and 𝑌1 such that 𝑋1 ⊂ 𝑌1. Let be a frequent closed itemset
(i.e. ∈). Since 𝑀𝐺𝐾 (𝑟1) = 1, we have 𝑠𝑢𝑝𝑝(𝑋1) = 𝑠𝑢𝑝𝑝(𝑌1). From 𝑠𝑢𝑝𝑝(𝑋1) =
𝑠𝑢𝑝𝑝(𝑌1), we derived that 𝑠𝑢𝑝𝑝(𝛾 (𝑋1)) = 𝑠𝑢𝑝𝑝(𝛾 (𝑌1)) ⇒ 𝛾(𝑋1) = 𝛾(𝑌1) =. Ob-
viously, there exists a rule 𝑟2 ∶ 𝐺 → \𝐺 ∈ 𝐶𝐵𝐸+ such that 𝐺 is a generator of
for which 𝐺 ⊆ 𝑋1 and 𝐺 ⊆ 𝑌1. We show that the rule 𝑟1 and its supports can
be derived from the rule 𝑟2 and its supports. From 𝛾 (𝑋1) = 𝛾(𝑌1) = and 𝛾 (𝐺) =,
we then have 𝑠𝑢𝑝𝑝(𝑟1) = 𝑠𝑢𝑝𝑝(𝛾 (𝑋1)) = 𝑠𝑢𝑝𝑝(𝛾 (𝑌1)) = 𝑠𝑢𝑝𝑝() = 𝑠𝑢𝑝𝑝(𝑟2), and
deduce that𝑀𝐺𝐾 (𝑟1) = 𝑀𝐺𝐾 (𝑟2). This explains that 𝑟1 can be derived from 𝑟2, and
is a redundant rule of 𝑟2, so it’s pruned in 𝐶𝐵𝐸+ base.
(𝑖𝑖) Let 𝑟2 ∶ 𝐺 → \𝐺 ∈ 𝐶𝐵𝐸+, we then have 𝐺 ∈ and ∈ . We demonstrate

that there is no other rule 𝑟3 ∶ 𝑋3 → 𝑌3\𝑋3 ∈ 𝐶𝐵𝐸+ such as 𝑠𝑢𝑝𝑝(𝑟3) = 𝑠𝑢𝑝𝑝(𝑟2),
𝑀𝐺𝐾 (𝑟3) = 𝑀𝐺𝐾 (𝑟2), 𝑋3 ⊆ 𝐺 and ⊆ 𝑌3. If 𝑋3 ⊆ 𝐺, we then have 𝛾 (𝑋3) ⊆ 𝛾(𝐺) =.
We deduce that 𝑋3 ∉⇒ 𝑟3 ∉ 𝐶𝐵𝐸+. If ⊆ 𝑌3, we then have = 𝛾() = 𝛾(𝐺) ⊂ 𝑌3 =

20

SCRS Conference Proceedings on Intelligent Systems (2021)

𝛾 (𝑌3) ⇒ 𝐺 ∉𝑌3 . In other words, 𝑟2 is non-redundant. This proves that 𝐶𝐵𝐸+ is a
non-redundant base.
[𝐶𝐵𝐴+ Basis] Let be the set of frequent closed. For each ∈ , let be the

set of generators of . Given 𝛼 , 0 < 𝛼 ⩽ 1, we have:

𝐶𝐵𝐴+ = {𝐺 → \𝐺|(𝐺,) ∈𝛾 (𝐺) × , 𝛾 (𝐺) ⊂, 𝑃(′|𝐺′) > 𝑃(′), 𝑝𝐺 ⩾ 1 − 𝛼} (2.7)

(i) All valid positive approximate rules can be derived from the rules of 𝐶𝐵𝐴+.
(ii) All association rules in the 𝐶𝐵𝐴+ basis are non-redundant approximate rules.

(𝑖) Let 𝑟1 ∶ 𝑋1 → 𝑌1\𝑋1 ∈ 𝐶𝐵𝐴+ such that 𝑋1 ⊂ 𝑌1. For any 𝑋1 and 𝑌1, there
is a generator 𝐺1 such that 𝐺1 ⊂ 𝑋1 ⊆ 𝛾(𝑋1) = 𝛾(𝐺1) and a generator 𝐺2 such
that 𝐺2 ⊂ 𝑌1 ⊆ 𝛾(𝑌1) = 𝛾(𝐺2). Since 𝑋1 ⊂ 𝑌1, we have 𝑋1 ⊆ 𝛾(𝐺1) ⊂ 𝑌1 ⊆ 𝛾(𝐺2)
and the rule 𝑟2 ∶ 𝐺1 → (𝛾(𝐺2))\𝐺1 ∈ 𝐶𝐵𝐴+. We show that 𝑟1 can be derived
from 𝑟2. Since 𝐺1 ⊂ 𝑋1 ⊆ 𝛾(𝑋1) = 𝛾(𝐺1) and 𝐺2 ⊂ 𝑌1 ⊆ 𝛾(𝑌1) = 𝛾(𝐺2), we have
𝑠𝑢𝑝𝑝(𝐺1) = 𝑠𝑢𝑝𝑝(𝑋1) and 𝑠𝑢𝑝𝑝(𝐺2) = 𝑠𝑢𝑝𝑝(𝑌1) = 𝑠𝑢𝑝𝑝(𝛾 (𝐺2)). This gives that
𝑠𝑢𝑝𝑝(𝑟1) = 𝑠𝑢𝑝𝑝(𝑟2) and 𝑀𝐺𝐾 (𝑟1) = 𝑀𝐺𝐾 (𝑟2), in other words, 𝑟1 can be derived
from 𝑟2 and therefore, 𝑟1 is a redundant rule of 𝑟2.
(𝑖𝑖) Let 𝑟2 ∶ 𝐺 → \𝐺 ∈ 𝐶𝐵𝐴+, we then have ∈ and 𝐺 ∈. We demon-

strate that there is no other rule 𝑟3 ∶ 𝑋3 → 𝑌3\𝑋3 ∈ 𝐶𝐵𝐴+ such as 𝑠𝑢𝑝𝑝(𝑟3) =
𝑠𝑢𝑝𝑝(𝑟2), 𝑀𝐺𝐾 (𝑟3) = 𝑀𝐺𝐾 (𝑟2), 𝑋3 ⊆ 𝐺 and ⊆ 𝑌3. If 𝑋3 ⊆ 𝐺, we then have
𝛾 (𝑋3) ⊂ 𝛾(𝐺) =⇒ 𝑋3 ∉𝐶 . If ⊆ 𝑌3, we then have = 𝛾() ⊂ 𝑌3 = 𝛾(𝑌3). As re-
sult, 𝐺 ∉𝑌3⇒ 𝑟3 ∉ 𝐶𝐵𝐴+, in other words, 𝑟2 is a non-redundant rule. This proves
that 𝐶𝐵𝐴+ is a non-redundant base.
[𝐶𝐵𝐸− Basis] Let be the set of frequent maximal, and 𝑚𝑖𝑛𝑠𝑢𝑝 ∈]0, 1]. For

each ∈ , let be the set of frequent generators of , we have :

𝐶𝐵𝐸− = {𝐺 → 𝑦 | 𝐺 ∈, ∈ , 𝑦 ∉ ∧𝑠𝑢𝑝𝑝(𝑦) < 𝑚𝑖𝑛𝑠𝑢𝑝} (2.8)

(i) All valid negative exact rules can be derived from the rules of the 𝐶𝐵𝐸− basis.
(ii) All association rules in the 𝐶𝐵𝐸− basis are non-redudant negative exact rules.

(𝑖) Let 𝑟1 ∶ 𝑋1 → 𝑌 1\𝑋1 ∈ 𝐶𝐵𝐸− such that 𝑋1 ⊂ 𝑌1 ⊆ where ∈ . Since
𝑀𝐺𝐾 (𝑟1) = 1, we have 𝑋1 ≅ 𝑌 1 ⇒ 𝑠𝑢𝑝𝑝(𝑋1) = 𝑠𝑢𝑝𝑝(𝑌1). Since 𝑠𝑢𝑝𝑝(𝑋1) =
𝑠𝑢𝑝𝑝(𝑌1), we have 𝑠𝑢𝑝𝑝(𝛾 (𝑋1∪𝑌1)) = 𝑠𝑢𝑝𝑝(𝛾 (𝑋1)) = 𝑠𝑢𝑝𝑝(𝛾 (𝑌1)) ⇒ 𝛾(𝑋1∪𝑌 1) =
𝛾(𝑋1) = 𝛾(𝑌1) = (𝑎). Obviously, ∃𝑟2 ∶ 𝐺 → 𝑦\𝐺 ∈ 𝐶𝐵𝐸− such that 𝐺 ∈ for which
𝐺 ⊆ 𝑋1 and 𝐺 ⊆ 𝑌1, and thus 𝐺 ⊆ 𝑦 (by Definition 3.2). We show that the rule
𝑟1 can be derived from 𝑟2. Since 𝑟2 ∶ 𝐺 → 𝑦\𝐺 ∈ 𝐶𝐵𝐸−, we have 𝑠𝑢𝑝𝑝(𝐺 ∪ 𝑦) =
𝑠𝑢𝑝𝑝(𝐺). From 𝑠𝑢𝑝𝑝(𝐺 ∪ 𝑦) = 𝑠𝑢𝑝𝑝(𝐺), we have 𝑠𝑢𝑝𝑝(𝛾 (𝐺 ∪ 𝑦)) = 𝑠𝑢𝑝𝑝(𝛾 (𝐺)) =

21

Bemarisika Parfait & Totohasina André

𝑠𝑢𝑝𝑝(𝛾 (𝑦)) ⇒ 𝛾(𝐺∪𝑦) = 𝛾(𝐺) = 𝛾(𝑦) = (𝑎′). From relations (𝑎) and (𝑎′), we have
𝛾 (𝐺 ∪ 𝑦) = 𝛾(𝑋1 ∪ 𝑌1) ⇔ 𝑠𝑢𝑝𝑝(𝑟1) = 𝑠𝑢𝑝𝑝(𝑟2). Since 𝐺 ⊆ 𝑋1 ⊂ 𝑌1 ⊂ 𝑦 ⊆ 𝛾(𝐺) =,
we have 𝑠𝑢𝑝𝑝(𝐺) = 𝑠𝑢𝑝𝑝(𝑋1) = 𝑠𝑢𝑝𝑝(𝑌1) = 𝑠𝑢𝑝𝑝(𝑦) = 𝑠𝑢𝑝𝑝() ⇒ 𝑀𝐺𝐾 (𝑟1) =
𝑀𝐺𝐾 (𝑟2). These results explain that 𝑟1 can be derived from 𝑟2, and is a redundant
rule w.r.t 𝑟2.
(𝑖𝑖) Let 𝑟2 ∶ 𝐺 → 𝑦\𝐺 ∈ 𝐶𝐵𝐸−, where 𝐺 ∈ and 𝑦 is an infrequent 1-itemset

(i.e. 𝑦 ∉). We demonstrate that there is no other rule 𝑟3 ∶ 𝑋3 → 𝑌 3\𝑋3 ∈ 𝐶𝐵𝐸−
such as 𝑠𝑢𝑝𝑝(𝑟3) = 𝑠𝑢𝑝𝑝(𝑟2), 𝑀𝐺𝐾 (𝑟3) = 𝑀𝐺𝐾 (𝑟2), 𝑋3 ⊆ 𝐺 and 𝑦 ⊆ 𝑌3. If 𝑋3 ⊆ 𝐺,
we then have 𝛾 (𝑋3) ⊆ 𝛾(𝐺) ⊂ 𝛾(𝑦) =. We deduce that 𝑋3 ∉ and conclude that
𝑟3 ∉ 𝐶𝐵𝐸−. If 𝑦 ⊆ 𝑌3, we then have 𝛾 (𝐺) ⊂ 𝛾(𝑦) ⊆ 𝛾(𝑌3) =. We deduce that 𝐺 ∉𝑌 3
and conclude that 𝑟3 ∉ 𝐶𝐵𝐸−. This implies that 𝑟2 is a non-redundant rule, and
proves that 𝐶𝐵𝐸− is a non-redundant base.
[𝐶𝐵𝐴− Basis] For each (, 𝐶) ∈ × , let (resp. 𝐶) be the set of generators

of closed (resp. 𝐶) such that ⊊ 𝐶 and 𝑃(𝐶′|′) < 𝑃(𝐶′). Given 𝛼 , 0 < 𝛼 ⩽ 1, we
have :

𝐶𝐵𝐴− = {𝐺 → 𝑔|(𝐺, 𝑔) ∈ ×𝐶 ,⊊ 𝐶, 𝑃(𝑔′|𝐺′) > 𝑃(𝑔′), 𝑝𝐺𝑔 ⩾ 1 − 𝛼} (2.9)

(i) All valid negative approximate association rules can be derived from the
rules of 𝐶𝐵𝐴−. (ii) All association rules in the 𝐶𝐵𝐴− are non-redudant negative
approximate rules.
(𝑖) Let 𝑟1 ∶ 𝑋1 → 𝑌1\𝑋1 ∈ 𝐶𝐵𝐴− with 𝑋1 ⊂ 𝑌1. For any frequent 𝑋1 and 𝑌1,

there is a generator 𝐺1 such that 𝐺1 ⊂ 𝑋1 ⊆ 𝛾(𝑋1) = 𝛾(𝐺1) and a generator 𝐺2
such that 𝐺2 ⊂ 𝑌1 ⊆ 𝛾(𝑌1) = 𝛾(𝐺2). Since 𝑋1 ⊂ 𝑌1, we have 𝑋1 ⊆ 𝛾(𝐺1) ⊂ 𝑌1 ⊂
𝐺2 ⊆ 𝛾(𝑌1) = 𝛾(𝐺2). Obviously, ∃𝑟2 ∶ 𝐺1 → 𝐺2\𝐺1 ∈ 𝐶𝐵𝐴− such that 𝛾 (𝐺) ⊊ 𝛾 (𝑔)
(by Definition 3.2). We show that 𝑟1 can be derived from 𝑟2. From 𝐺1 ⊂ 𝑋1 ⊆ 𝛾(𝐺1)
and 𝐺2 ⊂ 𝑌1 ⊆ 𝛾(𝐺2), we then have 𝐺1 ≅ 𝑋1 and 𝑌1 ≅ 𝐺2 ⇒ 𝑠𝑢𝑝𝑝(𝑋1 ∪ 𝑌1) =
𝑠𝑢𝑝𝑝(𝐺1 ∪ 𝐺2) and𝑀𝐺𝐾 (𝑋1 → 𝑌1) = 𝑀𝐺𝐾 (𝐺1 → 𝐺2). This explains that 𝑟1 can be
derived from 𝑟2, and is a redundant rule.
(𝑖𝑖) Let 𝑟2 ∶ 𝐺 → 𝑔\𝐺 ∈ 𝐶𝐵𝐴−, i.e. 𝐺 ∈𝐶 and 𝑔 ∈ such that 𝛾 (𝐺) ⊊ 𝛾 (𝑔) (i.e.

𝐶 ⊊). We demonstrate that there is no other rule 𝑟3 ∶ 𝑋3 → 𝑌3\𝑋3 ∈ 𝐶𝐵𝐴−
such that 𝑠𝑢𝑝𝑝(𝑟3) = 𝑠𝑢𝑝𝑝(𝑟2), 𝑀𝐺𝐾 (𝑟3) = 𝑀𝐺𝐾 (𝑟2), 𝑋3 ⊂ 𝐺 and 𝑌3 ⊃ 𝑔. If
𝑋3 ⊂ 𝐺, we then have 𝛾 (𝑋3) ⊂ 𝛾(𝐺) = 𝐶 ⇒ 𝑋3 ∉𝐶 . Since 𝑋3 ⊂ 𝐺, we have
𝑠𝑢𝑝𝑝(𝑋3) > 𝑠𝑢𝑝𝑝(𝐺) ⇒ 𝑀𝐺𝐾 (𝑟3) < 𝑀𝐺𝐾 (𝑟2). If 𝑔 ⊂ 𝑌3, we then have 𝑠𝑢𝑝𝑝(𝑔) >
𝑠𝑢𝑝𝑝(𝑌3) ⇒ 𝑀𝐺𝐾 (𝑟2) > 𝑀𝐺𝐾 (𝑟3). This means that 𝑟2 is a non-redundant rule, and
proves that 𝐶𝐵𝐸− is a non-redundant base.
The generation of these bases is done with a main procedure called CBNRR

22

SCRS Conference Proceedings on Intelligent Systems (2021)

(Concise base of non-redundant rules). ThismainCBNRRprocedure (Algorithm 4)

Algorithm 4 CBNRR, Concise base of non-redundant rules
Require: = ⟨𝐶𝑙𝑜𝑠𝑒𝑑, 𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡⟩.
Ensure: , Concise base of non-redundant rules.
1: +();
2: +();
3: −();
4: −();

takes as input the set , and returns the minimal set of rules (called base)
by calling four secondary procedures + (Algo.5), + (Algo.6), −
(Algo.7) and − (Algo.8). This choice of decomposition of the algorithms is
motivated by the parallelization of these four procedures during the implemen-
tation to have simultaneously the four bases of the non-redundant association
rules defined above.
The procedure + (Algorithm 5) takes as input a set , and returns

as output the exact positive association rule base. The + procedure is ini-

Algorithm 5 Procedure +
Require: = ⟨𝐶𝑙𝑜𝑠𝑒𝑑, 𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡⟩.
Ensure: +, Concise base of exact positives rules.
1: + = ∅;
2: for (𝑘 = 1 to ℓ, where ℓ is the size of largest frequent itemset in) do
3: for all (𝑘-generator 𝐺 of 𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) do
4: if (𝐺 ≠ 𝛾(𝐺)) then
5: + ← + ∪ {𝐺 → 𝛾(𝐺)\𝐺, 𝐺.𝑠𝑢𝑝𝑝}; /* + Basis */
6: end if
7: end for
8: end for

tialized to empty (line 1). Then, each element of is examined in order of
increasing 𝑘 (lines 2-8). For each 𝑘-generator 𝐺 ∈ , it verifies if 𝐺 is not a
unique element in its equivalence class (line 4). If this is true, then 𝐺 → \𝐺 is a
valid exact rule, and added to the list + (line 5). Finally, the algorithm 5 re-
turns the set + containing the list of exact positive rules between generators
and their closures (line 9).
The + procedure (Algorithm 6) takes as input a set , and returns

as output the exact positive association rule base. First, the procedure + is
initialized to empty (line 1). It then examines the in order of increasing
𝑘 (lines 2-10). For each 𝑘-generator 𝐺 ∈ 𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , it considers a closed

23

Bemarisika Parfait & Totohasina André

Algorithm 6 Procedure +
Require: = ⟨𝐶𝑙𝑜𝑠𝑒𝑑, 𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡⟩, a real 𝛼 ∈]0, 1].
Ensure: +, Concise base of approximate positive rules.
1: + = ∅;
2: for (𝑘 = 1 to ℓ, where ℓ is the size of largest frequent itemsets in) do
3: for all (𝑘-generator 𝐺 ∈ 𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) do
4: for all (frequent closed itemset ∈ 𝑗>𝑘 | ⊃ 𝛾 (𝐺)) do
5: if (𝑚𝑔𝑘(𝐺,) ≥ 1 − 𝛼) then
6: + ← + ∪ {𝑟 ∶ 𝐺 → \𝐺, 𝑟 .𝑚𝑔𝑘, 𝑟 .𝑠𝑢𝑝𝑝}; /* + Basis */
7: end if
8: end for
9: end for
10: end for
11: return +

containing the 𝛾 (𝐺) closure of 𝐺 (lines 4-9). Then, it verifies if the pair (𝐺,) is
valid (i.e. 𝑚𝑔𝑘(𝐺,) ≥ 1 − 𝛼, ∀𝛼 ∈]0, 1]) (line 5). If this is true, then 𝐺 → \𝐺 is a
valid approximate association rule, and is added to the list + (line 6).

The − procedure (Algorithm 7) takes as input a set , and returns
as output the exact negative rule base. It is initialized to empty (line 1). Then, it

Algorithm 7 Procedure −
Require: = ⟨𝐶𝑙𝑜𝑠𝑒𝑑, 𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡⟩, 𝑚𝑖𝑛𝑠𝑢𝑝.
Ensure: −, A concise base of exact negative rules.
1: − = ∅;
2: for (𝑘 = 1 to ℓ, where ℓ is the size of largest frequent itemsets in) do
3: for (each 𝑘-maximal ℎ ∈ .𝑀𝑎𝑥𝑖𝑚𝑎𝑙) do
4: for (each 𝑘-generator 𝑔 ∈ .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 of ℎ) do
5: if (∃ 1-itemset 𝑧 ∉ ℎ | 𝑠𝑢𝑝𝑝(𝑧) < 𝑚𝑖𝑛𝑠𝑢𝑝) then
6: − ← − ∪ {𝑟 ∶ 𝑔 → 𝑧\𝑔, 𝑟 .𝑠𝑢𝑝𝑝}; /* − Basis */
7: end if
8: end for
9: end for
10: end for

examines the set in ascending order of 𝑘 (lines 2-8). For each 𝑘-generator
𝑔 ∈ 𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 of amaximal itemset ℎ, it verifies if there is any infrequent
1-itemset that is not part of the maximal itemset ℎ. If so, then the rule 𝑔 → 𝑧\𝑔
is an exact negative rule, and added to the list − (line 5).
The − procedure (Algorithm 8) takes as input a set , and a risk 𝛼

such that 0 < 𝛼 ≤ 1. It returns as output the approximate negative association
rule base. The procedure − is initialized to empty (line 1). It then examines

24

SCRS Conference Proceedings on Intelligent Systems (2021)

Algorithm 8 Procedure −
Require: = ⟨𝐶𝑙𝑜𝑠𝑒𝑑, 𝑀𝑎𝑥𝑖𝑚𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡⟩, and a real 𝛼 ∈]0, 1].
Ensure: −, Concise base of approximate negative rules.
1: − = ∅;
2: for (𝑘 = 1 to ℓ, where ℓ is the size of largest frequent itemset in) do
3: for (each 𝑘-generator 𝐺 ∈ 𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) do
4: for (each other 𝑘-generator 𝑔 ∈ 𝑗≠𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 | 𝛾 (𝐺) ⊊ 𝛾 (𝑔) ∧ 𝑃(𝛾 (𝑔)′|𝛾 (𝐺)′) <

𝑃(𝛾 (𝑔)′)) do
5: if (𝑚𝑔𝑘(𝐺, 𝑔) ⩾ 1 − 𝛼) then
6: − ← − ∪ {𝐺 → 𝑔\𝐺}; /* Base − */
7: end if
8: end for
9: end for
10: end for

the set according to the increasing order of 𝑘 (lines 2-10). For each 𝑘-
generator𝐺 ∈ 𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , and each other 𝑘-generator 𝑔 ∈ 𝑗≠𝑘 .𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
such that 𝐺.𝑐𝑙𝑜𝑠𝑢𝑟𝑒 and 𝑔.𝑐𝑙𝑜𝑠𝑢𝑟𝑒 are incomparable and negatively dependent, the

− procedure verifies if the pair (𝐺, 𝑔) is significant (line 5). If it is valid, then
the rule 𝐺 → 𝑔\𝐺 is an approximate negative rule, and added in the list −
(line 6).

We now present simple algorithms for reconstructing all exact and approxi-
mate positive/negative rules. In order to develop these algorithms, we introduce
a Proposition 3.2 for deriving all valid rules.

Soient𝑋1 → 𝑌\𝑋1 et𝑋2 → 𝑌\𝑋2 deux régles quelconques telles que𝑋1 ⊆ 𝑋2 ⊆
𝑌 , on a 𝑀𝐺𝐾 (𝑋1 → 𝑌\𝑋1) ⩽ 𝑀𝐺𝐾 (𝑋2 → 𝑌\𝑋2), i.e. 𝑚𝑔𝑘(𝑋1, 𝑌) ⩽ 𝑚𝑔𝑘(𝑋2, 𝑌)
[20].
It follows that 𝑀𝐺𝐾 is antimonotonic according to the inclusion⊆ : the more

attributes are passed from left to right, the more 𝑀𝐺𝐾 decreases. For example,
for frequent 4-itemset 𝐴𝐵𝐶𝐷, we have : 𝑀𝐺𝐾 (𝐴𝐵𝐶 → 𝐷) ⩾ 𝑀𝐺𝐾 (𝐴𝐵 → 𝐶𝐷) ⩾
𝑀𝐺𝐾 (𝐴 → 𝐵𝐶𝐷) ⇔ 𝑚𝑔𝑘(𝐴𝐵𝐶, 𝐷) ⩾ 𝑚𝑔𝑘(𝐴𝐵, 𝐶𝐷) ⩾ 𝑚𝑔𝑘(𝐴, 𝐵𝐶𝐷) means that
if𝐴 → 𝐵𝐶𝐷 is valid, then𝐴𝐵𝐶 → 𝐷 and𝐴𝐵 → 𝐶𝐷 are also valid. In other words,
if 𝑟1 is valid, then 𝑟2 is also valid. So, 𝑟2 can be derived by 𝑟1. On the other hand,
as we pointed out above, it is immediate that for all itemsets 𝑋 and 𝑌 such that
𝑋 ⊂ 𝑌 , we have𝑀𝐺𝐾 (𝑋 → 𝑌) < 𝑀𝐺𝐾 (𝑌 → 𝑋) [20]. Now, for all𝑋 and 𝑌 , we have
𝑀𝐺𝐾 (𝑌 → 𝑋) = 𝑀𝐺𝐾 (𝑋 → 𝑌) [20]. Therefore, 𝑀𝐺𝐾 (𝑋 → 𝑌) < 𝑀𝐺𝐾 (𝑋 → 𝑌),
i.e. 𝑚𝑔𝑘(𝑋 , 𝑌) < 𝑚𝑔𝑘(𝑋 , 𝑌), ∀𝑋 ⊂ 𝑌 means that if 𝑋 → 𝑌 is valid, then 𝑋 → 𝑌
is also valid. This notes that 𝑋 → 𝑌 can be derived from 𝑋 → 𝑌 .

We firts present an algorithm 9 that derives all exact positive and negative
rules. It takes as input +, and returns as output the set 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+− of all

25

Bemarisika Parfait & Totohasina André

Algorithm 9 Deriving All Exact Positives and Negatives Rules
Require: +.
Ensure: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+−, All exact positives and negatives rules.
1: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+− = ∅;
2: for all ({𝑟1 ∶ 𝑋1 → 𝑌1, 𝑟1.𝑠𝑢𝑝𝑝} ∈ +| |𝑌1| > 1) do
3: for all (subset 𝑦1 ⊂ 𝑌1) do
4: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+− ← 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+− ∪ {𝑟2 ∶ 𝑋1 → 𝑦1, 𝑟3 ∶ 𝑋 1 → 𝑦1, 𝑟1.𝑠𝑢𝑝𝑝};
5: if ({𝑟4 ∶ 𝑋1 ∪ 𝑦1 → 𝑌1\𝑦1, 𝑟5 ∶ 𝑋 1 ∪ 𝑦1 → 𝑌 1\𝑦1, 𝑟1.𝑠𝑢𝑝𝑝} ∉ 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+−) then
6: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+− ← 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡+− ∪ {𝑟4, 𝑟5, 𝑟1.𝑠𝑢𝑝𝑝};
7: end if
8: end for
9: end for

exact positive and negative rules. Indeed, for each {𝑟1 ∶ 𝑋1 → 𝑌1} ∈ + with
|𝑌1| > 1 (lines 2-9) and each subset 𝑦1 ⊂ 𝑌1 (lines 3-8), it generates all rules of the
form 𝑟2 ∶ 𝑋1 → 𝑦1, 𝑟3 ∶ 𝑋 1 → 𝑦1, 𝑟4 ∶ 𝑋1 ∪𝑦1 → 𝑌1\𝑦1 and 𝑟5 ∶ 𝑋 1 ∪𝑦1 → 𝑌 1\𝑦1
(lines 4 and 6). These rules have the same support as 𝑟1 (cf. Theorem 3.2).

The algorithm 10 is built with the same optimizations properties as the Propo-
sition 3.2. It takes as input the + database of approximate rules, and returns
the 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥− set of all approximate positive rules of a database. It proceeds in

Algorithm 10 Deriving All Approximate Positives Rules
Require: +.
Ensure: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+, All approximate positive rules.
1: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+ = +;
2: for all ({𝑟1 ∶ 𝑋1 → 𝑌1, 𝑟1.𝑠𝑢𝑝𝑝} ∈ +| |𝑌1| > 1) do
3: for all (subset 𝑦1 ⊂ 𝑌1) do
4: if ({𝑟2 ∶ 𝑋1 → 𝑦1, 𝑟2.𝑠𝑢𝑝𝑝, 𝑟2.𝑚𝑔𝑘} ∉ 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+) then
5: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+ ← 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+ ∪ {𝑟2 ∶ 𝑋1 → 𝑦1, 𝑟3 ∶ 𝑋 1 → 𝑦1, 𝑟1.𝑠𝑢𝑝𝑝, 𝑟1.𝑚𝑔𝑘};
6: end if
7: end for
8: end for
9: for all ({𝑟1 ∶ 𝑋1 → 𝑌1, 𝑟1.𝑠𝑢𝑝𝑝, 𝑟1.𝑚𝑔𝑘} ∈ 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+) do
10: for all (subset 𝑦1 ⊂ 𝑌1) do
11: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+ ← 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥+ ∪ {𝑟2 ∶ 𝑋1 ∪ 𝑦1 → 𝑌1\𝑦1, 𝑟3 ∶ 𝑋 1 ∪ 𝑦1 →

𝑌 1\𝑦1, 𝑟1.𝑠𝑢𝑝𝑝, 𝑟1.𝑚𝑔𝑘};
12: end for
13: end for

two phases. In the first phase (lines 2-10), it considers the approximate positive
rules 𝑋1 → 𝑌1 with |𝑌1| > 1 in the increasing order of their consequent size (lines

26

SCRS Conference Proceedings on Intelligent Systems (2021)

3-8). For each rule 𝑋1 → 𝑌1, all rules of the form 𝑋1 → 𝑦1, with 𝑦1 ⊂ 𝑌1, are
generated if they have not been generated previously (line 5). These rules have
the same support and 𝑚𝑔𝑘 (cf. Theorem 3.2). In the second phase (lines 11-15),
for each rule 𝑋1 → 𝑌1, it generates all rules of the form 𝑋1 ∪ 𝑦1 → 𝑌1\𝑦1 and
𝑋 1 ∪ 𝑦1 → 𝑌 1\𝑦1, ∀𝑦1 ⊂ 𝑌1. These rules have the same support as 𝑟1.

The algorithm 11 takes as input the base −, and returns as output the set
𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡− of all exact negative association rules. For each exact negative rule

Algorithm 11 Deriving All Exact Negatives Rules
Require: −.
Ensure: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡−, All exact negative rules.
1: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡− = ∅;
2: for all ({𝑟1 ∶ 𝑋1 → 𝑌 1, 𝑟1.𝑠𝑢𝑝𝑝} ∈ −| |𝑌 1| > 1) do
3: for all (subset 𝑦1 ⊂ 𝑌 1) do
4: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡− ← 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡− ∪ {𝑟2 ∶ 𝑋1 → 𝑦1, 𝑟3 ∶ 𝑋 1 → 𝑦1, 𝑟1.𝑠𝑢𝑝𝑝};
5: if ({𝑟4 ∶ 𝑋1 ∪ 𝑦1 → 𝑌 1\𝑦1, 𝑟5 ∶ 𝑋 1 ∪ 𝑦1 → 𝑌1\𝑦1, 𝑟1.𝑠𝑢𝑝𝑝} ∉ 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡−) then
6: 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡− ← 𝐴𝑙𝑙𝐸𝑥𝑎𝑐𝑡− ∪ {𝑟4, 𝑟5, 𝑟1.𝑠𝑢𝑝𝑝};
7: end if
8: end for
9: end for

𝑋1 → 𝑌1 of − with |𝑌1| > 1 (lines 2-9) and each subset 𝑦1 of 𝑌1 (lines 3-
8), the algorithm 11 generates all exact negative rules of the form 𝑋1 → 𝑦1 and
𝑋 1 → 𝑦1 (line 4). Thanks to the Propositions 3.2, any rules of the form 𝑋1 ∪ 𝑦1 →
𝑌1\𝑦1 and 𝑋 1 ∪ 𝑦1 → 𝑌1\𝑦1 with 𝑦1 ⊂ 𝑌1 are generated (line 6) if they have not
been generated previously (line 5). These rules have the same support as 𝑟1 (cf.
Theorem 3.2).

The algorithm 12 takes as input the base −, and returns the set𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥−
of all approximate negative rules. It proceeds in two steps. In the first step (lines
2-8), it considers the rules 𝐺 → 𝑔 with |𝑔| > 1 in the increasing order of their
consequent (lines 3-9). For each 𝐺 → 𝑔, all rules of the form 𝐺 → 𝑔1 and 𝐺 → 𝑔1,
with 𝑔1 ⊂ 𝑔, are generated if they have not been generated previously (line 5).
These rules have the same support and 𝑚𝑔𝑘. In the 2nd step (lines 11-15), it con-
siders all the rules 𝐺 → 𝑔, and generates all rules of the form 𝐺 ∪ 𝑔1 → 𝑔1\𝑔1
and 𝐺 ∪ 𝑔1 → 𝑔\𝑔1, ∀𝑔1 ⊂ 𝑔.
Let 𝑋 → 𝑌 and 𝑋 → 𝑌 two principal rules generated, 𝑚 = || the number of

all attributs in database , and 𝑙 the size of anatecedent rule. The worst case time
complexity of principal procedure (Algorithm 4) is (| |3(3𝑚 + 2𝑚+𝑙 − 2𝑚 −
2𝑙 − 2𝑚)).
The lines 1-2 can produce different rules of the form 𝑋 → 𝑌 which can cal-

27

Bemarisika Parfait & Totohasina André

Algorithm 12 Deriving All Approximate Negatives Rules
Require: −.
Ensure: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥−, All approximate negative rules.
1: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥− = ∅;
2: for (𝑖 = 1 to 𝑠 − 1, where 𝑠 is the size of largest frequent generator itemset) do
3: for all ({𝑟1 ∶ 𝐺 → 𝑔, 𝑟1.𝑠𝑢𝑝𝑝} ∈ −| |𝑔| > 𝑖) do
4: for all (subset 𝑔1 ⊂ 𝑔) do
5: if ({𝑟2 ∶ 𝐺 → 𝑔1, 𝑟2.𝑠𝑢𝑝𝑝, 𝑟2.𝑚𝑔𝑘} ∉ 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥−) then
6: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥− ← 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥− ∪ {𝑟2 ∶ 𝐺 → 𝑔1, 𝑟3 ∶ 𝐺 → 𝑔1, 𝑟1.𝑠𝑢𝑝𝑝, 𝑟1.𝑚𝑔𝑘};
7: end if
8: end for
9: end for
10: end for
11: for all ({𝑟1 ∶ 𝐺 → 𝑔, 𝑟1.𝑠𝑢𝑝𝑝, 𝑟1.𝑚𝑔𝑘} ∈ 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥−) do
12: if (∃𝑔1 ∈ 𝛾(𝑔1) | 𝛾 (𝑔1) ⊊ 𝛾 (𝑔) ∧ |𝑔1| < |𝑔|) then
13: 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥− ← 𝐴𝑙𝑙𝐴𝑝𝑝𝑟𝑜𝑥− ∪ {𝑟2 ∶ 𝐺 ∪ 𝑔1 → 𝑔\𝑔1, 𝑟3 ∶ 𝐺 ∪ 𝑔1 →

𝑔\𝑔1, 𝑟1.𝑠𝑢𝑝𝑝, 𝑟1.𝑚𝑔𝑘};
14: end if
15: end for

culate as follows. An antecedent 𝑋 , can be selected from in (𝑚𝑙) ways. Since

𝑙 = 1, … , 𝑚 − 1, the number of all possible ways to select an antecedent is
𝑚−1
∑
𝑙=0

(𝑚𝑙) = 2𝑚 − 2. When the consequent contains a set of attributes, the idea

of redundancy is also enlarged. Now rule 𝑋 → 𝑌\𝑋 can be redundant with re-
spect to 𝑄 → 𝑍 such that 𝑄 ⊆ 𝑋 , 𝑍 ⊇ 𝑌\𝑋 (i.e. |𝑄| < |𝑋 |, |𝑌 \𝑋 | < |𝑍 | < ||). If
|𝑄| ≤ |𝑋 |, 𝑄 can be selected in 2𝑙 − 1 different ways, and if |𝑄| < |𝑋 |, it can be
selected in 2𝑙 − 2 different ways. Similarly, if |𝑍 | ≤ ||, 𝑍 can be selected in 2𝑚 − 1
different ways, and if |𝑍 | < ||, it can be selected in 2𝑚 − 2 different ways. Since 𝑄
and 𝑍 are separate, all combinations of 𝑄 and 𝑍 are possible. The number of all
rules, such that |𝑄| < |𝑋 | and |𝑍 | ≤ || is given (2𝑙 −2)(2𝑚−1) = 2𝑚+𝑙 −2.2𝑚−2𝑙 +2.
In addition, there are 2𝑚 − 2 rules, |𝑄| = |𝑋 | and |𝑍 | < ||. These make different
rules :

2𝑚+𝑙 − 2.2𝑚 − 2𝑙 + 2 + 2𝑚 − 2 = 2𝑚+𝑙 − 2𝑚 − 2𝑙
Thus, the all lines 1-2 (Algorithm 9 lines 2-8 and Algorithm 10 lines 2-10) take

at most
(| |3(2𝑚+𝑙 − 2𝑚 − 2𝑙)) (2.10)

28

SCRS Conference Proceedings on Intelligent Systems (2021)

The lines 3-4 can produce different rules of the form 𝑋 → 𝑌 , and calculates as
follows. Let𝑊 = 𝑋 ∪ 𝑌 . If |𝑊 | = 𝑖,𝑊 can be selected from in (𝑚𝑖) different ways.
For each 𝑊 , there are:

𝑚-itemsets ⇒ (𝑚𝑚)2
𝑚+1

(𝑚 − 1)-itemsets ⇒ (𝑚
𝑚 − 1)2

𝑚

⋮

(2)-itemsets ⇒ (𝑚2)2
2+1

In sum, we have

𝑚
∑
𝑖=2

(𝑚𝑖)(2
𝑖+1) = 2

𝑚
∑
𝑖=2

(𝑚𝑖) 2
𝑖

= 2 [
𝑚
∑
𝑖=0

(𝑚𝑖)2
𝑖 − (1 + 2𝑚)]

From the binomial theorem
𝑚
∑
𝑖=0

(𝑚𝑖)𝑥
𝑖 = (1 + 𝑥)𝑚, we can derive :

𝑚
∑
𝑖=2

(𝑚𝑖)2
𝑖+1 = 2(3𝑚 − 2𝑚 − 1)

Thus, the all lines 3-4 (Algorithm 11 lines 2-10 and Algorithm 12 lines 2-10) take
at most

(| |3(3𝑚 − 2𝑚)) (2.11)

Therefore, the total complexity ((2.10)+(2.11)), ∀𝑚, 𝑙, is (| |3(3𝑚 + 2𝑚+𝑙 −
2𝑚 − 2𝑙 − 2𝑚)).

4 Experimental Evaluation

We evaluate Concise with two comparable baseline approaches: Pasquier’s ap-
proach and Feno’s approach. All algorithms are implemented in R, on a PC Core
i3-2350M with 4CPUs. The Table 3 summarizes for each database, the number of

29

Bemarisika Parfait & Totohasina André

Table 3: Data characteristics

Database || || ||̂ 𝜌
T10I4D100K 100 000 1 000 10 1%
T20I6D100K 100 000 1 000 20 2%
C20D10K 10 000 386 20 5.18%
Mushrooms 8 416 119 23 19.33%

transactions ||, the number of items ||, the average size of transactions ||̂, and the
density 𝜌 of the database which is given by ||̂/||. The choice of databases is then
motivated by the variety of their ||, || and 𝜌. Some databases like Mushrooms 1

and C20D10K (cf. footnote 1) are very dense (with 𝜌 = 19.33% and 𝜌 = 5.18% re-
spectively), other databases like T10I4D100K2 and T20I6D100K (cf. footnote 2) are
sparse (with 𝜌 = 1% and 𝜌 = 2% respectively). For this, consider 𝛼 = 5% for Con-
cise and Feno’s approach, and minimal confidence 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 = 80% for Pasquier’s
approach. 𝐸+ (resp. 𝐴+) indicates a positive exact (resp. approximate) rules. 𝐸−
(resp. 𝐴−) denotes a negative exact (resp. approximate) rules. We also denote by
”-” a subset which could not generated. Table 4 reports, for each algorithm, the
number of extracted rules by varying the 𝑚𝑖𝑛𝑠𝑢𝑝. We observe that no negative

Table 4: Number of all valide positive and negative association rules

Pasquier’s approach Feno’s approach Concise
Dataset 𝑚𝑖𝑛𝑠𝑢𝑝 |𝐸+ | |𝐴+ | |𝐸− | |𝐴− | |𝐸+ | |𝐸− | |𝐴+ | |𝐴− | |𝐸+ | |𝐸− | |𝐴+ | |𝐴− |
3*T10I4D100K 10% 0 11625 - - 0 0 10555 1256 0 0 725 52

20% 0 8545 - - 0 0 6656 1058 0 0 545 34
30% 0 3555 - - 0 0 2785 954 0 0 355 25

3*T20I6D100K 10% 115 71324 - - 95 98 51899 3897 115 103 1804 56
20% 76 57336 - - 66 91 35560 2705 76 95 1403 38
30% 58 45684 - - 43 63 21784 1887 58 63 1175 27

3*C20D10K 10% 1125 33950 - - 975 255 28588 11705 1125 285 1856 182
20% 997 23821 - - 657 135 19582 8789 997 185 1453 123
30% 967 18899 - - 567 98 11581 4800 967 101 1221 97

3*Mushrooms 10% 958 4465 - - 758 289 3850 3887 958 304 1540 89
20% 663 3354 - - 554 178 2144 2845 663 198 1100 78
30% 543 2961 - - 444 109 1140 1987 543 115 998 39

rules are generated by Pasquier. For each algorithm, no 𝐸+ and 𝐴− are generated
on T10I4D100K when 𝑚𝑖𝑛𝑠𝑢𝑝 ≤ 30%. The reason is that all frequent are closed
itemsets. On other databases, Feno’s approach represents a smaller number w.r.t.
Concise and Pasquier’s approach. The explanation is that Feno is based on con-
cept of pseudo-closed [14] which returns a reduced number of frequent itemsets
and thus, it is the same for number of rules generated. However, Feno’s approach
is not informative. Whereas Concise and Pasquier’s approach generate the more
informative non-redundant association rules.

1http://kdd.ics.uci.edu/
2http://www.almaden.ibm.com/cs/quest/syndata.html

30

SCRS Conference Proceedings on Intelligent Systems (2021)

On dense databases (C20D10K and Mushrooms), Concise algorithm is more
selective than Pasquier’s approach and Feno’s approach for all 𝑚𝑖𝑛𝑠𝑢𝑝. Indeed,
on C20D10K and 𝑚𝑖𝑛𝑠𝑢𝑝 = 1%, Pasquier’s approach (resp. Feno) contains 33950
(resp. 28588) positive approximate rules as showed in Table 4, while the Concise
contains 1856 positive approximate rules; this gives the reduction ratio 94.5%
and 93.51% respectively. In this case, 32094 (resp. 26732) positive approximate
rules can be deduced either from the Pasquier (resp. Feno) or from the Concise
algorithm. The main reason is associated to the different techniques to prune
both UARs and redundant association rules.
We present in the following the execution times of Concise compared to those

existing. However, this comparison is still very difficult, for several reasons. First,
Feno is not comparable to Concise, because it ignores the central step for min-
ing frequent itemsets. Pasquier could not generate the negative rules. Then, we
partialy compare Concise w.r.t. Pasquier. The results will be represented in Fig. 2
by varying the 𝑚𝑖𝑛𝑠𝑢𝑝 at fixed 𝛼 = 0.05 and 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 = 0.6. On sparse databases
(T10I4D100K and T20I6D100K), Concise algorithm and Pasquier’s approach are
almost identical for positive exact rules 𝐸+ for all 𝑚𝑖𝑛𝑠𝑢𝑝 (cf. Fig. 2a and 2b). On
approximate rules 𝐴+, it is very obvious that Concise algorithm is better than
Pasquier (cf. Figure 2a, 2b). The explanation is that all frequent are closed item-
sets, that complicates the task of Pasquier who performs more operations than
Concise algorithm for counting frequent closed itemsets in database.

On dense databases (C20D10K and Mushrooms), Concise algorithm leads to
significant average time compared to Pasquier for all 𝑚𝑖𝑛𝑠𝑢𝑝 (cf. Figure 2c and
Figure 2d). The main reason is associated to the technique for pruning search
space of valid rules. Thanks to the different optimizations as developed, Concise
algorithm can reduce considerable amount the execution time for all minimum
support threshold 𝑚𝑖𝑛𝑠𝑢𝑝, it is not the case for Pasquier’s approach. The latter
obtains the least performance. This is mainly due to the lack of techniques for
pruning the search space for valid association rules. This obviously affects its
execution time. However, Pasquier’s approach joins Concise algorithm for the
𝐸+ execution times, when 𝑚𝑖𝑛𝑠𝑢𝑝 is 20% to 30%.

5 Conclusion

In this work, we have presented and evaluated the Concise algorithm for mining
non-redundant positive and negative association rules in a database. We have
proved theoretically and confirmed by experience that this algorithm allows to
remove a large number of redundant rules. Here are the possible perspectives

31

0.10 0.15 0.20 0.25 0.30

20
60

10
0

14
0

T10I4D100K

minsup
 (a)

T
im

e
(s

)

Pasquier's−|A+|
Pasquier's−|E+|
CONCISE−|A+|
CONCISE−|E+|

0.10 0.15 0.20 0.25 0.30

20
60

10
0

14
0

T20I6D100K

minsup
 (b)

T
im

e
(s

)

Pasquier's−|A+|
Pasquier's−|E+|
CONCISE−|A+|
CONCISE−|E+|

0.10 0.15 0.20 0.25 0.30

50
10

0
15

0
20

0

C20D10K

minsup
 (c)

T
im

e
(s

)

Pasquier's−|A+|
Pasquier's−|E+|
CONCISE−|A+|
CONCISE−|E+|

0.10 0.15 0.20 0.25 0.30

50
10

0
15

0
20

0
MUSHROOMS

minsup
 (d)

T
im

e
(s

)

Pasquier's−|A+|
Pasquier's−|E+|
CONCISE−|A+|
CONCISE−|E+|

Figure 2: Response times by varying 𝑚𝑖𝑛𝑠𝑢𝑝 at fixed 𝛼 = 0.05 and
𝑚𝑖𝑛𝑐𝑜𝑛𝑓 = 0.6

related to this work: Elaboration of an implicative graph from these association
rules collected; Construction of a hierarchical tree implicative this same set of
association rules.

Bibliography

[1] Duong, H.V. & Truong, T.C. (2015). An efficient method for mining associa-
tion rules based onminimum single constraints. Vietnam Journal Computer
Sciences, pp. 67–83.

[2] Fournier-Viger, P. & Tseng, V.S. (2012). Mining Top-K Non-redundant As-
sociation Rules. In L. Chen et al. (Eds.), pp. 31–40, Springer-Verlag.

[3] Pasquier, N., Taouil, R., Bastide, Y., Stumme, G. & Lakhal, L. (2005). Gener-
ating a condensed representation for association rules. In J. of Intell. Info.
Syst., pp. 29–60.

[4] Pasquier, N. (2009). Frequent Closed Itemsets Based Condensed Represen-
tations for Association Rules. In Knowledge Extraction, pp. 248–273.

[5] Xu, Y., Li, Y. & Shaw, G. (2011). Reliable representations for association rules.
In Data and Knowledge Engineering, pp. 555–575.

[6] Agrawal, R. & Srikant, R. (1994). Fast Algorithms for Mining Association
Rules. In Proceedings of 20th VLDB Conference, pp. 487–499.

[7] Cao, L., Dong, X. & Zheng, Z. (2016). E-NSP: Efficient negative sequential
pattern mining. In Artificial Intelligence, pp. 156–182.

[8] Dong, X., Hao, H., Zhao, L. & Xu, T. (2018). An efficient method for pruning
redundant negative and positive association rules. In NEUCOM.

[9] Dong, X., Yongshun, G. & Cao, L. (2018). F-NSP+: A Fast Negative Sequen-
tial Patterns Mining Method with Self-adaption Data Storage Strategy. In
Pattern Recognit, pp. 13–27.

[10] Rodriguez-Jimenez, J.M., Cordero,P., Encisoa, M. & Mora, A. (2014). Neg-
ative attributes and implications in Formal Concept Analysis. In Procedia
Computer Science, pp. 758–765.

[11] Xu, T., Li, T. & Dong, X. (2018). Efficient High Utility Negative Sequential
Patterns Mining in Smart Campusy. In IEEE Access, pp. 23839–23846.

2021. In Raju Pal & Praveen K. Shukla (eds.), SCRS Conference Proceedings
on Intelligent Systems, 13–34. Computing & Intelligent Systems, SCRS, India.
https://doi.org/10.52458/978-93-91842-08-6-2

Bemarisika Parfait & Totohasina André

[12] Totohasina, A. & Ralambondrainy, H. (2005). ION, A pertinent newmeasure
for mining information from many types of data. In SITIS.

[13] Ganter, B. & Wille, R. (1999). Formal concept analysis: Mathematical foun-
dations. In Springer.

[14] Mannila, M. & Toivonen, H. (1997). Levelwise Search and Borders of The-
ories in Knowledge Discovery. In Data Mining Knowledge Discovery, pp.
241–258.

[15] Durand, N. & Quafafou, M. (2013). Approximation de bordures de motifs
frquents par le calcul de traverses minimales approchées d’hypergraphes.
Conférence Francophone sur l’Apprentissage Automatique (CAp 2013).

[16] Liu, G., Li, J., Wong, L. & Hsu, W. (2014). Positive Borders or Negative
Borders: How to Make Lossless Generator Based Representations Concise.
SIAM, pp. 469–472.

[17] Bemarisika, P. & Totohasina, A. (2016). EOMF: Un algorithme d’extraction
optimisée des motifs fréquents. AAFD & SFC’2016, pp. 198–203.

[18] Gras, R., Régnier, J-C., Marinica, C. & Guillet, F. (2013). L’analyse statis-
tique implicative, Méthode exploratoire et confirmatoire é la recherche de
causalités. In Cépadués Ed., 11–40.

[19] Bemarisika, P. & Totohasina, A. (2021). Generating a Condensed Represen-
tation for Positive and Negative Association Rules. Business Information
Systems (BIS), pp. 175–186.

[20] Bemarisika, P. & Totohasina, A. (2019). An Informative Base of Positive and
Negative Association Rules on Big Data. IEEE Intnal Conf. on Big Data, pp.
2428–2437.

[21] Bemarisika, P. & Totohasina, A. (2020). An Efficient Method for Mining
Informative Association Rules in Knowledge Extraction. A. Holzinger et al.
(Eds.): CD-MAKE 2020, pp. 227–247.

[22] Feno, D.R., Diatta, J. & Totohasina, A. (2006). Galois Lattices and Based for
𝑀𝐺𝐾 -valid Association Rules. In Ben Yahia et al. (Eds.), pp. 186–197.

34

