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1 Introduction 

Positively invariant sets show an important role in the theory and applications of dynamical systems. 

Set invariance theory, very well probed in [1], it appears in many different problems to demonstrating 

stability such as in constrained control [2], with guaranteed invariance, stability and convergence 

properties [3]. There are many types of positively invariant sets such as polyhedral sets, ellipsoidal sets, 

Lorenz cones, etc. [3, 4]. We mainly consider convex polyhedral sets in this paper. The existence of an 

invariant set is equivalent to the presence of a Lyapunonv function and hence is equivalent to a stability 

test [5]. As we extend the class of system descriptions outside the class of linear systems, linear systems 

with constraints [6,7] are probably the most important class in practice. The most popular approaches 

or designing controllers for linear systems Model Predictive Control (MPC) [8] has become the 

accepted standard for complex constrained multivariable control problems in the process industries. A 

discussion on feasibility requires clear assumptions on the constraints in the optimization [9]. The 

controller is also given for the feasibility problem necessary and sufficient conditions for the existence 

of such controller are given [10]. To obtain a guarantee of robust stability in the presence of constraints, 

it is likely that the associated algorithm will give conservative performance and be valid only within a 

quite restricted region [5]. 

The objective is to determine the region containing the feasible admissible solutions of the problem 

MPC, the paper is organized as follows, first section introduces problem statement and proposed 

solution the second section gives an illustrative example, and a conclusion section closes the paper. 

2 Problem Formulation  

Consider the problem of regulating to the origin the discrete-time linear time invariant system 

represented by the following state equation such us: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) (1) 

where, 𝑥(𝑘) ∈ ℝ𝑛  represents the state vector and 𝑢(𝑘)) ∈ ℝ𝑚 stands for the control actions at time 

instant k., 𝐴 and 𝐵 are real 𝑛 ×  𝑛  and n× 𝑚 matrix respectively, i.e.𝐴 ∈ ℝ𝑛×𝑛  , 𝐵 ∈ ℝ𝑛×𝑚. 

Supposed that exists around the origin a polyhedral positively invariant set 𝒮 defined by the expression 

[2] 

𝒮(𝐺,𝜔) =  {𝑥 ∈ ℛ𝑛/𝐺𝑥 ≤ 𝜔}      With 𝜔(𝑖) > 0 𝑓𝑜𝑟𝑖 = 1, … , 𝑔 (2) 

where, 𝐺 is a matrix 𝐺 ∈ ℝ𝑔×𝑛 , and a vector 𝜔 ∈ ℝ𝑔 with positive components, If 𝒮(𝐺,𝜔) is a convex 

positively invariant set of system, implies  𝑥𝑘𝜖𝒮 𝑎𝑛𝑑 𝑥𝑘+1𝜖𝒮 [2]. 

It is emphasized that the MPC dual mode strategy makes use of invariant sets [8] and as such the 

algorithms are only defined when the state is within those sets the control low is defined: 

𝑈 = −𝐹𝑥 . (3) 

Suppose the control is subject to saturation constraints 𝑈𝑚𝑖𝑛  and 𝑈𝑚𝑎𝑥 

−𝑈𝑚𝑖𝑛 < 𝑈 < +𝑈𝑚𝑎𝑥  (4) 

Equation (2) implies that    𝑥 ∈ 𝒮(𝐺,𝜔) ⇒ −𝜔 ≤ 𝐺𝑥(𝑘) ≤ +𝜔 

Substitute (1) in (2) 
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−𝜔 ≤ 𝐺(𝐴𝑥(𝑘 − 1) + 𝐵𝑈(𝑘 − 1)) ≤ +𝜔 (5) 

−𝜔 − 𝐺𝐴𝑥(𝑘 − 1) ≤ 𝐺𝐵𝑢(𝑘 − 1) ≤ +𝜔 − 𝐺𝐴𝑥(𝑘 − 1) (6) 

𝐺 × 𝐵  let’s note 𝐶1 matrix size (𝑔 × 𝑛) × (𝑛 × 𝑚) = (𝑔 × 𝑚) using the left inverse pseudo matrix 𝐶1
+ =

(𝐶1
′𝐶1)

−1𝐶1
′  while 𝐶1

+𝐶1 = 𝐼 

𝐶1
+ = ((𝐺𝐵)′(𝐺𝐵))−1(𝐺𝐵)′ (7) 

Substitute  𝐶1
+ in (6) we find  

𝐶1
+ (−𝜔 − 𝐺𝐴𝑥(𝑘 − 1)) ≤ 𝑢(𝑘 − 1) ≤ 𝐶1

+(𝜔 − 𝐺𝐴𝑥(𝑘 − 1))   (8) 

In addition, permissibility control region must respect saturation constraints. Consequently, the global 

Control constraints became: 

{
𝑉𝑚𝑖𝑛

𝑘−1 ≤ 𝑢(𝑘 − 1) ≤ 𝑉𝑚𝑎𝑥
𝑘−1

𝑈𝑚𝑖𝑛 ≤ 𝑢(𝑘 − 1) ≤ 𝑈𝑚𝑎𝑥

 (9) 

with  

{
𝑉𝑚𝑖𝑛

𝑘−1 = 𝐶1
+(−𝜔 − 𝐺𝐴𝑥(𝑘 − 1))

𝑉𝑚𝑎𝑥
𝑘−1 = 𝐶1

+(𝜔 − 𝐺𝐴𝑥(𝑘 − 1))
 (10) 

Feasible solutions occur if inequalities in (9) must satisfactory simultaneously. Set of permissible 

commands is then defined as thought intersection of these inequalities, which expressed by the 

resulting global contrast: 

𝑀𝑎𝑥(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛
𝑘−1) ≤ 𝑢(𝑘 − 1) ≤ min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

𝑘−1)    (11) 

The control law can be designed as 

𝑢(𝑘 − 1) = average (𝑀𝑎𝑥(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛
𝑘−1),min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

𝑘−1)) (12) 

We can change average function in equation (12) by the Min or the Max function.  

The states set for which the relation in (11) is fulfilled noted𝐶𝐹𝑘−1, if equation (11) is satisfied, there is at 

least one 𝑢𝑘−1 transmitting 𝑥𝑘−1𝜖𝐶𝐹𝑘−1 to  𝑥𝑘 ∈ 𝒮  

from (11) 𝑥𝑘−1 Is contained in the largest area 𝐶𝑘−1 defined by:  

𝑉𝑚𝑎𝑥
𝑘−1 ≥ 𝑈𝑚𝑖𝑛&  𝑉𝑚𝑖𝑛

𝑘−1 ≤ 𝑈𝑚𝑎𝑥   (13) 

Substitute 𝑉𝑚𝑖𝑛
𝑘−1  and  𝑉𝑚𝑎𝑥

𝑘−1 we can have 

𝐶1
+𝜔 − 𝐶1

+𝐺𝐴𝑥(𝑘 − 1) ≥ 𝑈𝑚𝑖𝑛  (14) 

−𝐶1
+𝜔 − 𝐶1

+𝐺𝐴𝑥(𝑘 − 1) ≤ 𝑈𝑚𝑎𝑥  (15) 

According to equations (13) and (14) by simple handling we find: 

−(𝐶1
+𝜔 + 𝑈𝑚𝑎𝑥) ≤ 𝐶1

+𝐺𝐴𝑥(𝑘 − 1) ≤ 𝐶1
+𝜔 − 𝑈𝑚𝑖𝑛  (16) 

For step k-2 

−(𝐶1
+𝜔 + 𝑈𝑚𝑎𝑥) ≤ 𝐶1

+𝐺𝐴(𝐴𝑥(𝑘 − 2) + 𝐵𝑢(𝑘 − 2)) ≤ 𝐶1
+𝜔 − 𝑈𝑚𝑖𝑛 (17) 
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−(𝐶1
+𝜔 + 𝑈𝑚𝑎𝑥) ≤ 𝐶1

+𝐺𝐴2𝑥(𝑘 − 2) + 𝐶1
+𝐺𝐴𝐵𝑢(𝑘 − 2)) ≤ 𝐶1

+𝜔 − 𝑈𝑚𝑖𝑛−(𝐶1
+𝜔 + 𝑈𝑚𝑎𝑥) − 𝐶1

+𝐺𝐴2𝑥(𝑘 −

2) ≤ 𝐶1
+𝐺𝐴𝐵𝑢(𝑘 − 2)) ≤ − 𝐶1

+𝐺𝐴2𝑥(𝑘 − 2) + 𝐶1
+𝜔 − 𝑈𝑚𝑖𝑛                                                                          (18) 

Let’s note𝐶1
+𝐺𝐴𝐵 = 𝐶2 

Knowing that matrix 𝐶2  is a square matrix, we can use directly its inverse matrix 𝐶2
−1, we obtain: 

𝑉𝑚𝑖𝑛
𝑘−2 ≤ 𝑢(𝑘 − 2) ≤ 𝑉𝑚𝑎𝑥

𝑘−2 (18) 

with 

{
𝑉𝑚𝑖𝑛

𝑘−2 = −𝐶2
−1[(𝐶1

+𝜔 + 𝑈𝑚𝑎𝑥) + 𝐶1
+𝐺𝐴2𝑥(𝑘 − 2)]

𝑉𝑚𝑎𝑥
𝑘−2 = 𝐶2

−1[− 𝐶1
+𝐺𝐴2𝑥(𝑘 − 2) + 𝐶1

+𝜔 − 𝑈𝑚𝑖𝑛]
 (19) 

Given the saturation constraints defined by (4) 

{
𝑉𝑚𝑖𝑛

𝑘−2 ≤ 𝑢(𝑘 − 2) ≤ 𝑉𝑚𝑎𝑥
𝑘−2

𝑈𝑚𝑖𝑛 ≤ 𝑢(𝑘 − 2) ≤ 𝑈𝑚𝑎𝑥

 (20) 

Feasible solutions exist if inequalities in (21) must satisfactory simultaneously. 

A set of permissible commands is then defined by intersection of these inequalities, which expressed by 

the following global inequality: 

𝑀𝑎𝑥(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛
,𝑘−2, 𝑉𝑚𝑖𝑛

(𝑘−1)
) ≤ 𝑢(𝑘 − 2) ≤ min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

𝑘−2, 𝑉𝑚𝑎𝑥
(𝑘−1)

) (21) 

The control low can be given by: 

𝑢(𝑘 − 1) = average (𝑀𝑎𝑥(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛
𝑘−2, 𝑉𝑚𝑖𝑛

(𝑘−1)
),min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

𝑘−2,𝑉𝑚𝑎𝑥
(𝑘−1)

)) (22) 

The set of states for which this relation is satisfied𝐶𝐹𝑘−2, if this equation is satisfied, there is at least one 

𝑢𝑘−2 who transfer𝑥𝑘−2𝜖𝐶𝐹𝑘−2 ⊂ 𝐶𝐹𝑘−1 to  𝑥𝑘 ∈ 𝒮 from (22) 

𝑥𝑘−2 Is contained in the largest area 𝐶𝑘−2 defined by: 

𝑉𝑚𝑎𝑥
𝑘−2 ≥ 𝑈𝑚𝑖𝑛&  𝑉𝑚𝑖𝑛

𝑘−2 ≤ 𝑈𝑚𝑎𝑥 (23) 

 with 𝑉𝑚𝑖𝑛
𝑘−2and   𝑉𝑚𝑎𝑥

𝑘−2 are defined in equation (20) By simple manipulation 

−𝐶2
−1(𝐶1

+𝜔 + 𝑈𝑚𝑎𝑥) − 𝑈𝑚𝑎𝑥 ≤ 𝐶2
−1𝐶1

+𝐺𝐴2𝑥(𝑘 − 2) ≤ 𝐶2
−1(𝐶1

+𝜔 − 𝑈𝑚𝑖𝑛) − 𝑈𝑚𝑖𝑛(24) 

−𝐶2
−1(𝐶1

+𝜔 + 𝑈𝑚𝑎𝑥) − 𝑈𝑚𝑎𝑥 ≤ 𝐶2
−1𝐶1

+𝐺𝐴2(𝐴𝑥(𝑘 − 3) + 𝐵𝑢(𝑘 − 3)) ≤ 𝐶2
−1(𝐶1

+𝜔 − 𝑈𝑚𝑖𝑛) − 𝑈𝑚𝑖𝑛         (26) 

Let’s note 𝐶2
−1𝐶1

+𝐺𝐴2𝐵 = 𝐶3 

Now suppose that in step 𝑘 − 𝑁 the  procedure will continue for𝑁thiteration, there is at least one 

admissible command 𝑢𝑘−𝑁
𝑓

 qui transmit𝑥𝑘−𝑁to𝑥𝑘−𝑁+1and such that: 

max(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛
(𝑘−𝑁)

, 𝑉𝑚𝑖𝑛
(𝑘−𝑁−1)

, …… . 𝑉𝑚𝑖𝑛
(𝑘−1)) ≤ 𝑢𝑘−𝑁

𝑓
≤ min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

(𝑘−𝑁)
, 𝑉𝑚𝑎𝑥

(𝑘−𝑁−1)
, … . . 𝑉𝑚𝑎𝑥

(𝑘−1
)        (25) 

where, 𝑉𝑚𝑖𝑛
(𝑘−𝑁)

, 𝑉𝑚𝑖𝑛
(𝑘−𝑁)−1

…. and 𝑉𝑚𝑎𝑥
(𝑘−𝑁)

, 𝑉𝑚𝑎𝑥
(𝑘−𝑁−1)

, … .. are designed through the same steps established in 

the previous paragraphs.  

The set of admissible control is defined by the simultaneous satisfaction of inequalities (27) this set of 

states for which the command exists  𝐶𝐹𝑁−𝑘−1with  𝐶𝐹𝑁−𝑘−1 ⊂ 𝐶𝑁−𝑘−1. 
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Finalizing proof of necessary condition. This isn’t sufficient, there is no guarantee that acceptable 

solution will be found, this problem is general for predictive control [5]. However, with very large 

prediction horizons and simulation tests, it is possible, for a given problem, admissibility was 

guarantee. 

Theorem 

Necessary condition for a sequence of admissible control  𝑢𝑗𝑗 =  0 . . . 𝑁 − 1 to transmit the current state 

𝑥0 insidethe invariant set such that: 

max(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛
(𝑘−𝑁)

, 𝑉𝑚𝑖𝑛
(𝑘−𝑁−1)

, … … .𝑉𝑚𝑖𝑛
(𝑘−1)) ≤ 𝑢𝑘−𝑁

𝑓
≤ min(𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

(𝑘−𝑁)
, 𝑉𝑚𝑎𝑥

(𝑘−𝑁−1)
, … . . 𝑉𝑚𝑎𝑥

(𝑘−1
)     

where all its elements are calculated previously.  

3 Simulation and Results  

We consider the application of the feasible command obtained above to an example found in [4]. The 

system to be controlled is defined by: 

𝑥(𝑘 + 1) = [

0.7 − 0.1  0   0 
 0.2 − 0.5 0.1 0
 0    0.1  0.1   0
 0.5   0  0.5 0.5

] 𝑥(𝑘) + [

0 0.1
 0.1 1
 0.1 0
 0   0

] 𝑢(𝑘) (26) 

with  −[ 0  0
 0  0 

] ≤ 𝑈 ≤ [1 1
1 1

]                        ∀𝑘.    (27) 

Polyhedral positively invariant set for this problem is defined  

⇒ −

[
 
 
 
 
 
 
 
 
 
4
4
4
4
4
4
4
4
4
4]
 
 
 
 
 
 
 
 
 

≤

[
 
 
 
 
 
 
 
 
 
 

1         0           0      0
0          1          0      0
0          0          1      0
0          0           0     1
−1        0          0     0
0      − 1       0        0
0           0      − 1     0
0           0       0     − 1
0.5        0      0.5    05

−0.5     0 − 0.5 − 0.5
]
 
 
 
 
 
 
 
 
 
 

𝑥(𝑘) ≤ +

[
 
 
 
 
 
 
 
 
 
4
4
4
4
4
4
4
4
4
4]
 
 
 
 
 
 
 
 
 

                        (28) 

The stabilizing control under invariant set: 

𝑢 = (−[0.0063   − 0.0045    0.0041    0.0017
0.0311   − 0.0577    0.0134    0.0020

]) 𝑥  (29) 

The horizon is N = 20.  

We can choose the control in the admissible area defined by (27). From this, three tests were carried 

out corresponding to three choices: 

Test1:               𝑢𝑓
𝑗
= average (max (𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛

(𝑘−𝑁)
, …… . 𝑉𝑚𝑖𝑛

(𝑘−𝑗)
) ,min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥

(𝑘−𝑁)
, . 𝑉𝑚𝑎𝑥

(𝑘−𝑗)
)  ) 

Test2:              𝑢𝑓
𝑗
=  max(𝑈𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛

(𝑘−𝑁)
, …… . 𝑉𝑚𝑖𝑛

(𝑘−𝑗)
) 

Test3 :             min (𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥
(𝑘−𝑁)

, . 𝑉𝑚𝑎𝑥
(𝑘−𝑗)

) 

Figures Fig.1, Fig.2, and Fig.3 respectively give the states and the control signals for test n ° 1, the states 

in figure1, incur a large variation when entering in the invariant set. 
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Fig. 1.The states 

 
Fig. 2. Control law U1 

 
Fig. 3.Control law U2 

4 Conclusion 

In this work we have established an admissible plain solution introduced by the new methodology to 

solve the MPC dual mode control and optimization problem. Stability is guaranteed using the theory of 

invariant sets. The approach subdivides the state space into regions, for each region the set of 

admissible control laws is determined. The simulation results on the given problem are encouraging. 

The future work is to generalize the method for nonlinear and piecewise systems. 
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