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High volumes of fly ash (HVFA) for cement in concrete, the future material of
construction industry is extensively explored for in sustainable developments on a
large scale. More ingredients in concrete make its nature complicated, determining
whose properties become tedious and uneconomical using traditional prediction
methods. From the literature, it is evident that soft computing techniques (SCT)
have proven their potentiality in predicting the highly non-linear behavior of con-
crete. In this study, 119 datasets of HVFA control concrete compressive strength
(CS) collected from literature is used to train SCT models such as artificial neu-
ral network (ANN), Support vector machine (SVM), particle swarm optimization-
based ANN (PSO-ANN), and PSO-SVM models; and a dataset of 12 nos. from an
individual experimental study is used for testing themodels. Cement, fly ash, water-
binder ratio, superplasticizer, fine aggregate, coarse aggregate, specimen type and
fly ash type are the models’ input parameters for predicting the HVFA concrete CS.
PSO is used to optimize the individual ANN and SVM parameters to improve their
performance. Statistical parameters i.e., correlation coefficient, root mean square
error and scatter index are used to measure the models’ efficacy. Both individual
and hybrid model results show good predictions of the HVFA control concrete CS
for an individual experimental study.
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1 Introduction 

Fly ash usage in large volumes has increased globally to minimize the usage of cement for construction 
purposes. The use of industrial waste i.e., fly ash in large volumes is contributing to the reduction of 
greenhouse gas emissions. The HVFA concrete is proportioned by replacing cement with fly ash by more 
than 40%  in concrete. Enormous literature is available determining the mechanical and durability 
properties of HVFA concrete in view of increasing its large-scale usage globally. It is seen that HVFA 
control concrete has properties similar to conventional concrete at later ages though requires the 
addition of chemical additives to improve its fresh and early age properties [1].It is known that for the 
proper usage of the concrete for any of the specific job requirements it is important to perceive its 
properties beforehand. Available traditional prediction methods have many drawbacks to be used for 
determining concrete behavior using more ingredients.  
 
Soft computing techniques (SCT) which is developed based on human thinking mechanism has 
successfully provided solutions to many of the highly complex civil engineering problems. Due to its 
proficiency to sustain tolerating imprecision, uncertainty, and partial truth in order to obtain tractability 
and robustness on simulating human decision-making behavior with low cost, it’s become more popular 
across all disciplines. It mainly consists of Expert System, Fuzzy Logic (FL), Artificial Neural Networks 
(ANN), and Evolutionary Algorithms. Optimization techniques such as PSO, ant colony optimization 
(ACO), etc. are combined with the individual models in view of improving the model performance [2, 
3]. 

From the literature, it is evident that individual models such as ANN, fuzzy logic, SVM, genetic 

algorithms, etc. are optimized using PSO. PSO based ANN models have been successfully implemented 
to evaluate the construction outcomes which helps to decide for litigation and for prediction of early 
warnings of nearing floods and evacuation measures of ShingMun River water stage; to locate the best 
position of trench layer arranged about the pipeline to attain least liquefaction potential; to predict the 
behavior of load-deformation of axially loaded piles; to estimate the safety factor for slope stability 
analysis to identify the potential sections of landslides; to predict the CS of HVFA concrete, etc. Also, 
PSO-based SVM models give solutions to real-time problems such as predicting the damage level of non-
shaped berm breakwater, predicting wave transmission over the submerged reef of tandem breakwater; 
predicting the hydraulic performance of stepped spillway, etc.[2, 3, 4, 5]. 
 
The objective of this study is to illustrate the use of SCT models such as ANN, SVM, PSO-ANN, and PSO-
SVM models in predicting the CS of individual HVFA concrete studies using basic ingredients of the mix 
proportions.  

2 Methodology 

2.1 Artificial Neural Network (Ann) 

ANN is programmed to simulate real-time problems and provide solutions similar to human thinking 
mechanisms. Information is passed forward through different layers of the well-connected network 
through artificial neurons. Fig. 1 shows the structure of an artificial neuron [2].This feed-forward 
network consists of input, hidden and output layers with neurons grouped and arranged systematically. 
All the neurons in the network are associated with a weight that has a significant effect on the network 
output. The input and output layer consists of neurons as applicable to the selected problem while 
hidden layer neurons are optimized on a trial-and-error basis to get a minimum error. The neurons in 
each of these layers are summed and activated using relevant functions. The network is trained over a 
number of epochs by adjusting the parameters until the input is mapped to the output. The error 
between actual and predicted values is propagated back to the network using the Levenberg-Marquardt 
technique [6]. The trained network with the least error is used for simulating new input data. 

Rajeshwari R1, Sukomal Mandal2

714



 

 
 

Fig. 1. An artificial neuron 

2.2 Support Vector Machine (SVM) 

SVM is used as an optimization tool for classification and regression problems [7, 8]. It separates the 
given data linearly into different classes and increases the margins between them using a hyperplane. 
For non-linear data, the data is transformed into higher dimensional space using kernel functions for 
locating the hyperplanes and the solution for the linear regression problem is found in this feature space. 
In this method, a loss function is used to neglect the error in true values within a certain distance of the 
maximized hyperplane margins which reasons the obtained solution. The number of support vectors 
lying on these hyperplanes governs the knowledge of data separation. 
 
Considering a training data sample of{(𝑎𝑘 , 𝑏𝑘)}𝑘=1

𝑛 , where n represents the training data size, 𝑎𝑘 ∈
 𝑇𝑛represents the input training vectors and 𝑏𝑘 ∈  {+1, −1} is the related scalar output. Fig. 2 shows the 
SVM regression graphical representation [3]. 
 

 
Fig. 2.A typical diagram of SVM regression with slack variables and ε-insensitive zone 

 
In SVM regression, the input space 𝑐𝑘 is projected onto m-dimensional feature space by non-linear 
mapping, for construction of linear model given by Equation (1), 
 

                              b = 𝑓(𝑎, 𝜔) =  𝑤𝑇  ∅(𝑎) +  p   (1) 
 
Where, w is the weight vector, p is the bias, w &p shows the hyperplane location, and ∅(𝑎) represents 
the non-linear data transformed to the higher dimensional feature space. 
 
Vapnik proposed the use of 𝜀 -insensitive loss function in SVM regression with assurance of global 
minima along with minimization of the empirical risk, where the empirical risk is given by Equation (2) 
 

𝑅𝑒𝑚(𝜔) =  
1

𝑚
∑ 𝐿𝜀(𝑏𝑗 , 𝑓(𝑎𝑗 , 𝜔))𝑚

𝑗=1                                               (2) 

 
With the loss function subjected to constraints as given by Equation (3), 
 

𝐿𝜀(𝑏, 𝑓(𝑎, 𝜔)) =   {
|𝑏 − 𝑓(𝑎, 𝜔)| − 𝜀, if |𝑏 − 𝑓(𝑎, 𝜔)| ≤ 𝜀

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0
  (3) 
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Using 𝜀-insensitive loss function, SVM performs linear regression in the higher dimensional feature 
space and optimizing the model with minimizing‖𝑤2‖. Slack variables 𝜉𝑗 , 𝜉𝑗

∗ , 𝑗 = 1, 2 … . 𝑚, the non-

negative variables are proposed to measure the divergence of the input data far from the 𝜀 - insensitive 
region. Hence, the SVM regression is defined by Equation (4), 
 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑜𝑓
1

2
‖𝑤‖2 +  𝐶 ∑ (𝜉𝑗 +  𝜉𝑗

∗ )𝑛
𝑖=1                   (4) 

 
Subject to constraints given by Equation (5), 
 

{

𝑏𝑖 , 𝑓(𝑎𝑖 , 𝜔) ≤ 𝜀 + 𝜉𝑖
∗ 

𝑓(𝑎𝑖 , 𝜔) − 𝑏𝑗 ≤ 𝜀 + 𝜉𝑖

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2 … . 𝑛

}      (5) 

 
The given problem is optimized into a dual problem with the solution given by Equation (6), 
 

𝑓(𝑎) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛𝑠𝑣

𝑖=1 𝐾(𝑏𝑖 , 𝑏)     (6) 

 
subject to 0 ≤ 𝛼𝑖

∗ ≤ 𝐶, 0 ≤ 𝛼𝑖 ≤ 𝐶, where penalty C gives an understanding between complexity of the 
model and degree of deviation that is greater than epsilon (𝜀),  𝛼𝑖,𝛼𝑖

∗ are the Lagrange multipliers and 

𝑛𝑠𝑣 are the support vector numbers and the kernel function is given by Equation (7), 
 

𝐾(𝑎𝑖 , 𝑎) = ∑ ∅𝑗(𝑎)∅𝑗(𝑎𝑖)𝑚
𝑗=1      (7) 

 
It is well known that the performance of the SVM model depends on adjusting the parameters such C, ε, 
and kernel parameters. In this study, the SVM model is developed for different kernel parameters and 
the best performing model for the corresponding kernel function is selected for the prediction of the 
HVFA concrete CS. 
 

2.3 Particle Swarm Optimization (Pso) 

PSO algorithm is derived from the behavior of natural inhabitants in a group to compute progressive 
means of qualitative solutions [9, 10]. In PSO, each solution for the problem under consideration is a 
particle of the swarm which is randomly distributed over the search space. The swarm moves towards 
the best solution by the knowledge gained by each particle moving through a path of optimum particles 
and by the entire swarm. The particle’s position and velocity are evaluated and optimized based on the 
associated fitness function. The search for the local and global best is improved with help of cognitive 
and social factors along with the inertia factor responsible for the particle’s current state. During each 
run, the particle is updated with its local best (pst) and global best (gst) knowledge of the fitness function 
[11]. 
For the given problem, the optimum solution is obtained by assigning randomly positions ‘Po’ and 
velocity ‘Ve’ for each particle in the swarm size ‘s’.  The particles are assumed to be randomly occupying 
‘D’ multidimensional hyperspace which is considered to be without mass and volume, with initial 
position and velocity represented by Equations (8) and (9). 
 

𝑃𝑜0 = {𝑃𝑜1,0, 𝑃𝑜2,0, … … . . , 𝑃𝑜𝑠,0}   (8) 

 
𝑉𝑒0 = {𝑉𝑒1,0, 𝑉𝑒2,0, … … . , 𝑉𝑒𝑠,0}                 (9) 

 
The particle's velocity and position are modified during each run given by Equations (10) and (11)  
 

𝑉𝑒𝑗+1
𝑖 =  𝑤𝑡𝑗𝑉𝑒𝑗

𝑖 +  𝑐1𝑟𝑛1(𝑝𝑠𝑡 − 𝑃𝑜𝑗
𝑖) + 𝑐2𝑟𝑛2 (𝑔𝑠𝑡 − 𝑃𝑜𝑗

𝑖)                    (10) 
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𝑃𝑜𝑗+1
𝑖 =  𝑃𝑜𝑗+1

𝑖 +  𝑉𝑒𝑗+1
𝑖   (11) 

 

Where, 𝑃𝑜𝑗
𝑖  is the particle current position i with j number of iterations, 𝑉𝑒𝑗

𝑖 is the velocity of search 

corresponding to ith particle number, c1& c2are the parameters corresponding to cognitive and social 
behavior, rn1 and rn2 are the numbers randomly selected from 0 to 1 given to the ith particle, wtj is the 
parameter of particle inertia, pst & gst are the local best and global best position attained by the ith number 
particle among all swarm particles. 
The pst and gst of each particle are modified as given in Equations (12) and (13) 
At iteration j, 
 

If 𝑓(𝑃𝑜𝑗+1
𝑖 < 𝑓(𝑝𝑠𝑡,𝑗

𝑖 )𝑡ℎ𝑒𝑛𝑝𝑠𝑡,𝑗+1
𝑖 =  𝑃𝑜𝑗+1

𝑖  

    𝑒𝑙𝑠𝑒𝑝𝑏𝑡,𝑗+1
𝑖 =  𝑝𝑏𝑡,𝑗

𝑖     (12) 

 

If 𝑓(𝑉𝑒𝑗+1
𝑖 < 𝑓(𝑔𝑠𝑡,𝑗

𝑖 )𝑡ℎ𝑒𝑛𝑔𝑠𝑡,𝑗+1
𝑖 =  𝑉𝑒𝑗+1

𝑖  

    𝑒𝑙𝑠𝑒 𝑔𝑠𝑡,𝑗+1
𝑖 =  𝑔𝑠𝑡,𝑗

𝑖                                                          (13) 

 
It is noted that the size of the swarm affects the rate convergence which is influenced by the social, 
cognitive, and inertia parameters associated with each during the search process.  

2.4 PSO based ANN and SVM Models 

The performance of the individual ANN and SVM models’ architecture is optimized by the PSO 
algorithm as shown in Fig.3 in form of a flow chart. The model optimization by PSO is demonstrated in 
the steps as given below: 
 

Step 1:  The collected data is preprocessed and normalized which is divided into train and test 
datasets. 
Step 2: ANN/ SVM model parameters are assigned with random values to optimize using the PSO 
algorithm. 
Step 3: Position and velocity values for each particle are randomly assigned to a swarm size of 119 
particles to train the individual network with PSO. 
Step 4: The fitness function is evaluated for the respective particle position in the swarm using ANN/ 
SVM. 
Step 5: The previous particle position with a better fitness function is saved as the best and updated 
as the best swarm position. 
Step 6: The particle position and velocity are updated using Equations (12) and (13). 
Step 7: The fitness function is re-evaluated using the updated particle positions until the maximum 
iteration is reached. 
Step 8: Repeat steps 2-5 until the optimum values are obtained. 
Step 9: The optimum values obtained for the ANN/ SVM are used to simulate the given test data. 
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Fig.3.PSO-ANN / PSO-SVM model flow chart 

2.5 Experimental Data Collection 

This study consists of 131 datasets collected from peer-reviewed journals pertaining to HVFA control 
concrete CS which are normalized between 0 to 1. The data collected includes concrete ingredients such 
as cement, fly ash, water-binder ratio, superplasticizer, fine aggregate, coarse aggregate and 28-day 
compressive strength. Each of the input and output parameters with minimum and maximum values 
are given in Table 1. 119 datasets are used for training the developed SCT models [12-35] and an 
individual experimental study with 12 nos. of datasets [36] is selected to test the efficacy of the developed 
SCT individual and hybrid models. A time series plot is shown to illustrate the distribution of input and 
output parameters for training and test data in Fig.4. 
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Fig.4. Time series plot of input and output parameters (Training-119, Testing- 12 datasets) 

Table 1. Range of Input and Output parameters. 

Parameters Abrv. Min Max  

Input     
Cement (Kg/m3) C 78 425 
Fly ash (Kg/m3) F 18 544 
Water-binder ratio w/b 0.24 0.66 
Superplasticizer (Kg/m3) SP 0 13 
Fine aggregate (Kg/m3) FA 279 990 
Coarse aggregate (Kg/m3) CA 813 1405 
Specimen type (Cube or Cylinder) ST 0 1 
Fly ash type (Class C or F) FT 0 1 
Output    
Compressive strength at 28 days (N/mm2) CS 9.7 86 

 

2.6 Model Development 

A feed-forward neural network is constructed with the Levenberg-Marquardt algorithm with 8 neurons 
in the input layer and 5 hidden layer neurons optimized by trial and error. The data from input and 
hidden layer neurons are passed through hyperbolic tangent sigmoid and linear transfer activation 
functions. The ANN model parameters are optimized by trial and error to obtain the least error between 
the actual and predicted values. Also, the SVM model is constructed with the same 8 input neurons using 
polynomial, radial bias function (rbf), erbf, spline, and b-spline as kernel functions. The parameters of 
the SVM (C, ε) and kernel (d, γ) function are adjusted to obtain the best performing model with the least 
errors. In the present study, the actual values are obtained by neglecting the error within a definite 
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distance using the quadratic loss function. Cement (C), fly ash (F), water-binder ratio (w/b), 
superplasticizer (SP), fine aggregate (FA), coarse aggregate (CA), specimen type (ST), and fly ash type 
(FT)are used as the 8 input neurons to predict the HVFA concrete 28-dayCS as the output. The models 
are trained with 119 datasets and tested over a dataset of 12 nos. on the MATLAB platform. 

The ANN and SVM model parameters are optimized further by using the PSO algorithm to obtain the 
best-performing model with the least errors in the predicted HVFA concrete CS. Initially, random values 
are assigned for ANN, SVM, and PSO parameters such as the size of the swarm, inertia weight; social 
and cognitive parameters, which are refined over a number of epochs to obtain the best performing 
hybrid PSO-ANN and PSO-SVM models. 

2.7 Evaluation Of Models Performance 

The ANN and PSO-ANN models’ performance is computed using statistical dimensions namely 

Coefficient of Correlation (CC), Root Mean Square Error (RMSE) and Scatter Index (SI). If 𝑀𝑖 and 𝑁𝑖 

denotes the actual and predicted HVFA control concrete CS, n the total number of data sets, 1 denotes 

the standard deviation, 𝑀𝑖
̅̅ ̅ and 𝑁𝑖 are the values of average actual and predicted HVFA concrete CS 

respectively, the statistical parameters are given by Equations (14) to (16): 

𝐶𝐶 = [∑ (𝑀𝑖
𝑛
𝑖=1 − 𝑀𝑖)(𝑁𝑖 − 𝑁𝑖)]/[√∑ (𝑀𝑖 − 𝑀𝑖)

2
(𝑁𝑖 − 𝑁𝑖)

2
𝑛
𝑖=1 ] (14) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑀𝑖−𝑁𝑖 )2𝑛

𝑖=1

𝑛
𝑋 100                                               (15) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝜎1
       (16) 

3 Results and Discussion 

The hybrid PSO-ANN and PSO-SVM models’ efficacy is investigated by comparing with the individual 
model results constructed using experimental data collected from the literature. The models are trained 
with 119 datasets and tested over an individual experimental study consisting of 12 datasets. 

3.1 Performance of ANN and PSO-ANN Models  

Firstly, an ANN model with 8-5-1 architecture is constructed which is trained over 40 epochs to obtain 
optimum parameters. The performance of the ANN model is measured using CC, RMSE, and SI 
statistical parameters.Fig.5 shows the optimum trained ANN model with weights and bias. 
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Fig.5. ANN (8-5-1) trained network with weights and bias 

The performance of the ANN model is further optimized using the PSO algorithm. The PSO-ANN 
algorithm is optimized with 100 swarm particles, 7hidden neurons which is trained over 100 epochs 
with c1= 0.45, c2= 2.05, and value of inertia set by trial and error to obtain optimum neuron weights for 
ANN. The optimum values are obtained for 7 hidden neurons are expressed in terms of statistical 
parameters. Table 2 shows the comparison of statistical parameters of ANN & PSO-ANN models result 
for the train and test datasets. The ANN and PSO-ANN model performance for the test dataset obtained 
are CC values of 0.9607 and 0.9747; RMSE values of 5.7109 and 11.7220; and SI values of 0.1320 and 
0.2710 respectively.  

Table 2. Comparison of statistical parameters of ANN and PSO-ANN models 
Statistical 
parameters 

ANN PSO-ANN 
Train Test Train Test 

CC 0.9583 0.9607 0.8204 0.9747 
RMSE 5.1304 5.7109 10.2781 11.7220 
SI 0.1330 0.1320 0.2664 0.2710 

Fig.6showsa comparison of CC values of the ANN and PSO-ANN models’ performances for the test 
dataset. The models can predict the HVFA concrete CS values closer to actual values with CC prediction 
above 0.96.From the result, it can be seen that ANN predicts CS values greater than 50 MPa beyond the 
actual values compared to PSO-ANN. The CS values lesser than 50 MPa are predicted with good 
generalization and lower errors by PSO-ANN compared to the ANN model. It is also observed that the 
hybrid PSO-ANN can converge to global minima faster compared to the ANN model though the 
negligible difference is found between the models. Thus, both ANN and PSO-ANN models have the 
potential to be used for predicting HVFA Concrete CS values of an individual experimental study. 
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Fig.6.Scatter plot of observed CS with ANN and PSO-ANN models predicted CS 

3.2 Performance of SVM and PSO-SVM Models  

The SVM model is constructed with optimum kernel functions whose performance depends on the 
selection of suitable kernel parameters. In this study, the optimum SVM model is obtained using the 
polynomial kernel function of first order with values C= 100 and nsv = 119. The performance of the SVM 
model is measured using CC, RMSE, and SI statistical parameters.  

The performance of the SVM model is further optimized by the PSO algorithm with a polynomial kernel 
function of second-order with the size of swarm 20, C1 = 0.3, and C2 = 3. Table 3 shows the comparison 
of statistical parameters of SVM& PSO-SVM models results for the train and test datasets. The SVM and 
PSO-SVM model performance for the test dataset obtained are CC values of 0.9762 and 0.9783; RMSE 
values of 5.5503 and 5.2528; and SI values of 0.1353 and 0.1214 respectively.  

Table 3. Comparison of statistical parameters of SVM and PSO-SVM models 
Statistical 
parameters 

SVM PSO-SVM 
Train Test Train Test 

CC 0.8500 0.9762 0.8989 0.9783 
RMSE 9.4592 5.5503 7.8980 5.2528 
SI 0.2452 0.1353 0.2047 0.1214 
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Fig.7. Scatter plot of observed CS with SVM and PSO-SVM models predicted CS 

Fig.7 shows a comparison of actual CS with SVM and PSO-SVM models predicted CS for the test dataset.  
It can be observed that both the individual and hybrid models have predicted HVFA concrete CS values 
closer to actual CS values with CC higher than 0.97 showing a strong relationship between both the 
values.  Both the SVM and PSO-SVM models have shown good predictions for CS in the range of 25 to 
60 MPa for an individual HVFA study. The difference between SVM and PSO-SVM model performance 
is negligible, thus noting the optimization already obtained by the individual model. For the selected test 
data, it is observed that both models have shown good predictions with high correlations and lower 
errors.  It is also seen that in comparison to experimental results, SVM and PSO-SVM models are being 
able to predict the CS of a single study better than ANN and PSO-ANN models. 

4 Conclusion 

In this study, the CS of HVFA concrete of individual experimental study is selected to check the efficacy 
of the SCT models such as ANN, SVM, PSO-ANN, and PSO-SVM in comparison to the laboratory 
procedure. The outcome of this study is summarized below:  

 The CS of HVFA control concrete of an individual experimental study is predicted using individual 
and hybrid SCT models. 

 ANN and SVM models have predicted CS values of an individual experimental study with the least 
errors and higher CC values. 

 PSO algorithm has been employed for further improvement of the performance of ANN and SVM 
models for the HVFA concrete CS prediction. 

 The ANN and PSO-ANN models can predict the HVFA concrete CS of an individual experimental 
study with the compressive strengths 25 to 70 MPa while PSO-ANN has shown good predictions for 
CS values below 50 MPa. 

 The SVM and PSO-SVM models can predict the HVFA concrete CS of an individual experimental 
study with the compressive strengths in the range of 25 to60 MPa.  

 It is observed that the SCT models can be efficiently used for the prediction of the CS of HVFA 
concrete of an individual experimental study. 

 The SCT models aims in reducing the number of trials required to obtain the mix proportions for 
specific application and also reduce the wastage of non-renewable resources. 
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