Design of Components for Liquefaction of Nitrogen Using DWSIM

Ruthu.K.S, Bhagyalakshmi.L, Sreelakshmi Diddi

B.M.S. College of Engineering, Bangalore, India

Corresponding author: Sreelakshmi Diddi, Email: sreelakshmi.che@bmsce.ac.in

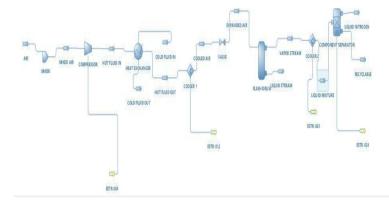
The field of Cryogenics deals with low temperature refrigeration applications such as liquefaction of gases. The various cryogenic cycles such as the Linde cycle, Claude cycle, Kapitza cycle help in liquefaction of various gases such as nitrogen, helium etc. Of all the three cryogenic cycles, Linde cycle was chosen as it is the simplest cycle. Liquid nitrogen has wide applications in various industries like food processing and transportation, medicine, medical therapy, manufacturing of computers etc. Operating variables such as flow rates, temperature, pressure, energy in a thermal system operating in a steady state can be calculated by a process simulation. Since design of plants is a cost and time-consuming process in reality, chemical engineers use simulators to simulate design and operation of a chemical plant and its equipment which saves money and time. Today, many simulators are in use. DWSIM was our choice for the project as it was open software, easy to work on and gave accurate results.

Keywords: Cryogenics, Liquid Nitrogen, Linde cycle Simulation, Process design, Heat exchanger.

2021. In Prashant Singh Rana, Deepak Bhatia & Himanshu Arora (eds.), *SCRS Proceedings of International Conference of Undergraduate Students*, 49–63. Computing & Intelligent Systems, SCRS, India. https://doi.org/10.52458/978-81-95502-01-1-6

1 Introduction

Conversion of any gas from vapor phase to liquid phase is called liquefaction. Liquefaction of gases is complex as it involves various processes and stages such as compressions, cooling, evaporation, condensation, and expansions. It is widely used in commercial, scientific, and industrial applications. Many gases can be put into a liquid state at normal atmospheric pressure by simple cooling. It is a conventional method of producing liquid from gases. It dates to the early 1820s when English scientist Michael Faraday liquified gases like chlorine, hydrogen sulphide, hydrogen bromide and carbon dioxide by the application of pressure for the first time. Yet, for many years later, the liquefaction of gases at critically low temperature remained unexplored. It wasdone only at the end of the 19th century. The first critically low temperature gases which were liquified were hydrogen (-399.5 F) and helium (-449.9 F). Liquefaction of gases in industries is accomplished by modifying the temperature, pressure and by using coolants [1].

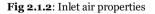

Liquefied gases have numerous applications in various fields. They can be stored and transported easily as compared to others. Liquid nitrogen is used to preserve the freshness of packaged or bulk foods, cryogenic metal hardening, as fuel in space shuttles and in magnetic resonance characterization of materials etc. Their medical applications include preservation of vaccines, biomaterials, and cryosurgery. The specific applications of liquid nitrogen include freezing and storage of food products, cryopreservation of biological samples, cryotherapy and cryosurgery, inert atmosphere to shield from oxygen, cryogenic machining of materials etc [1]. Hence, the topic of liquefaction of nitrogen was chosen.

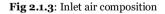
Liquid Nitrogen (N₂) is a gas under the category of critically low temperature gases. It becomes liquid at a very low temperature of -195.79°C (77 K, -320 F). Liquid nitrogen retains the character of the N2 molecule even after liquefaction. The weak Van der Waals interaction between the N₂ molecules of liquid nitrogen results in its very low boiling point. It is colourless and has a density of 0.808 g/ml at its boiling point.Liquid nitrogen is widely used as coolant because of its low density and inert nature which prevent combustible reactions. It can cool in a comparatively lesser time than if it were to be done naturally. Liquid nitrogen may harm the human tissue, so utmost care should be taken in its production and storage.

Simulation is a handy tool to gain an in-depth understanding of the N₂ liquefaction process and the effects of various process parameters and unit operations. A simulation study can be utilized as a preliminary step to the carrying out of the physical process. Basically, simulation is an imitation of any process, that shows how operations are carried out in the process. It can be used to conduct scale-up or scale-down studies of processes. It is very helpful to predict the trajectory of any process under inoperable conditions. In chemical engineering, process design is the choice and sequencing of units for the desired physical and/or chemical transformation of materials. It is central to chemical engineering andis the summit of that field, bringing together all the field's components. It can be the design of new facilities, or it can be the modification or expansion of existing facilities. It is distinct from equipment design, which is closer in spirit to the design of unit operations.

There is many simulation software which can be used for simulating this process. DWSIM was chosen for this work as it is a free and an open-source software easily accessible for students of undergraduate courses. It can simulate steady state vapor liquid, liquid, solid liquid and aqueous electrolyte equilibrium processes. It gives better understanding of processes, as it has built-in thermodynamic models and unit operations as well as a large range of tools for managing reactions or creating components. The most common thermodynamic cycles used for liquefaction of nitrogen areLinde cycle (Linde Hampson cycle and precooled Linde Hampson cycle), Claude cycle and Kapitza cycle. Linde cycle being the simplest cycle of the three is used for our project of liquefying nitrogen[1].

2 Methods




2.1 Simulation of Liquefaction of nitrogen

We have taken air (79% nitrogen ,21% oxygen) at a temperature of 298.15K, mass flow rate 5 kg/s and a pressure of 101325 pa (see Fig 2.1.2 and 2.1.3)[2].

Stream Conditions Cor		Stream Condition	ns Compound	Amounts				
Flash Spec	Temperature and Pressure (TP)		\sim	Basis Me	ole Fractions			~
Temperature	298.15	К	\sim	Solvent				\sim
Pressure	101325	Pa	\sim	Compound		Amount		Total: 1
Mass Flow	5	kg/s	\sim	Nitrogen Oxygen			0.79	Normalize
Molar Flow	173.308	mol/s	\sim	Water			0	Equalize
Volumetric Flow	4.23982	m3/s	\sim					Clear
Specific Enthalpy	-0.222702	kJ/kg	\sim					Accept Changes
Specific Entropy	0.139765	kJ/[kg.K]	\sim					
Vapor Phase Mole Fra	ction 1							

The air mixture taken is sent into a mixer for homogeneous mixing which is then directed into the compressor where it compresses the gas adiabatically with 75% efficiency. There is no heat added or extracted from the air. The temperature of the air increases along with the increase in its pressure (seeFig 2.1.4).

Calculation Parameters				
Calculation Type	Outlet Pressure		~	
Thermodynamic Process	Adiabatic		~	
Performance Curves	Edit Performance Cu	Curves		
Rotation Speed	1500	rpm		
Pressure Increase/Drop	84675	Pa	~	
Outlet Pressure	186000	Pa	~	
Adiabatic Efficiency (0-100)	75	%		
Polytropic Efficiency (0-100)	77.0117	%		
Power Required/Generated	379.62	kW		
Outlet Temperature	373.015	K		
Temperature Change	74.8652	К.		

Fig 2.1.4: Compressor conditions

The stream coming out of the compressor is still in the vapor phase but there is no change in composition of the feed (21% oxygen,79% nitrogen) (see Fig 2.1.5 and Fig 2.1.6).

Input Data Results	Annotations Dynamics Floating Ta	bles		Stream Conditions Comp	oound Amounts		
Stream Conditions	Compound Amounts			Basis Mole Fraction	ns		~
Flash Spec	Temperature and Pressure (TP)		\sim	Solvent			\sim
Temperature	373.015	К	\sim	Compound	Amount		Total: 1
Pressure	186000	Pa	\sim	Nitrogen		0.79	Normalize
Mass Flow	5	kg/s	\sim	Oxygen Water		0.21	Equalize
Molar Flow	173.308	mol/s	\sim	TT LACE			Clear
Volumetric Flow	2.88963	m3/s	\sim				Accept Changes
Specific Enthalpy	75.7013	kJ/kg	\sim				
Specific Entropy	0.1919	kJ/[kg.K]	\sim				
Vapor Phase Mole	e Fraction 1						

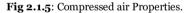


Fig 2.1.6: Compressed air Composition.

Next the stream enters the heat exchanger where water at 303 K,101325 pa and 1.3kg/s mass flow rate is used as coolant. Water having low temperature exchanges heat with hot fluid flowing through the Heat exchanger. The heat exchanger conditions, coolant properties, and coolant composition (see Fig 2.1.7, Fig 2.1.8, and Fig 2.1.9 respectively). The coolant leaves the heat exchanger in liquid phase with temperature 353.275K. The heat exchanger inlet air properties and composition (see Fig 2.1.10 and Fig 2.1.11).

alculation Parameters				Stream Conditions	Compound Amounts	
Calculation Type	Heat Transfer E	fficiency	\sim	Flash Spec	Temperature and P	(TP
Flow Direction	Counter Current		\sim	riasir Spec		_
Cold Fluid Pressure Drop	0	Pa	\sim	Temperature	303	К
Hot Fluid Pressure Drop	0	Pa	\sim	Pressure	101325	Pa
Cold Fluid Outlet Temperature	353.275	К	\sim	Mass Flow	1.3	kg/s
Hot Fluid Outlet Temperature	304.403	К	\sim	Molar Flow	72.161	mol/s
Global Heat Transfer Coefficient	1000	W/[m2.K]	\sim	Volumetric Flow	0.00130661	m3/s
Heat Exchange Area	50.296	m2	\sim	volumetric Flow	0.00130001	1113/8
Heat Exchanged	348.825	kW	\sim	Specific Enthalpy	-2605.15	kJ/kg
Min Temperature Difference	0	K.	\sim	Specific Entropy	-7.01192	kJ/[kg.K]
Heat Loss	0	kW	\sim	Vapor Phase Mole	Fraction 0	
Heat Transfer Efficiency	98	%	\sim			

Fig 2.1.7: Heat exchanger Conditions

Fig 2.1.8: Coolant properties

Stream Con	ditions Co	mpound Amounts		
Basis	Mole Frac	tions		~
Solvent				\sim
Compour	nd	Amount		Total: 1
Nitrogen			0	Normalize
Oxygen			0	Equalize
Water	_		-	Clear
				Accept Changes

Fig 2.1.9: Coolant composition

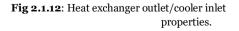

nput Data Results	Annotations	Dynamics	Floating Ta	bles		Stream Con	ditions Compound	d Amounts		
Stream Conditions	Compound A	mounts				Basis	Mole Fractions			~
Flash Spec	Temperat	ure and Pres	sure (TP)		\sim	Solvent				\sim
Temperature			353.275	К	\sim	Compou	nd	Amount		Total: 1
Pressure			101325	Pa	\sim	Nitrogen			0.79	Normalize
Mass Flow			1.3	kg/s	\sim	Oxygen			0.21	Equalize
Molar Flow			72.161	mol/s	\sim	Water			0	Clear
Volumetric Flow			0.00133822	m3/s	\sim					Accept Changes
Specific Enthalpy			-2336.83	kJ/kg	\sim					
Specific Entropy			-6.19268	kJ/[kg.K]	\sim					
Vapor Phase Mole	Fraction		0							

Fig 2.1.10: Heat exchanger inlet air properties

Fig 2.1.11: Heat exchanger inlet air composition

The main outlet stream (considering the coolant outlet stream as another) from the heat exchanger enters the cooler with temperature 304.403K, the former mixture is in vapor phase[2].

Input Data Resu	Its Annotations	Dynamics	Floating Tal	bles		Stream Conditions	Compound Amounts		
Stream Condition	s Compound A	mounts				Basis Mole	Fractions		\sim
Flash Spec	Temperat	ure and Press	ure (TP)		\sim	Solvent			\sim
Temperature			304.403	К	\sim	Compound	Amount		Total: 1
Pressure			186000	Pa	\sim	Nitrogen		0.79	Normalize
Mass Flow			5	kg/s	\sim	Oxygen		0.21	Equalize
Molar Flow			173.308	mol/s	\sim	Water		0	
Volumetric Flow			2.35812	m3/s	\sim				Clear
Specific Enthal	у		5.93633	kJ/kg	\sim				Accept Changes
Specific Entrop	/		0.0147638	kJ/[kg.K]	\sim				
Vapor Phase M	ole Fraction		1						

Fig 2.1.13: Heat exchanger outlet/ cooler inletair air Composition.

Ruthu.K.S, Bhagyalakshmi.L, Sreelakshmi Diddi

In the cooler, the air temperature further decreases to 86.3005K and the composition remains the same (see Fig 2.1.14, Fig 2.1.15 and Fig 2.1.16).

Calculation Farameters			Input Data	Results	Annotations	Dynamics	Floating Ta	bles	
Calculation Type	Outlet Vapor Mole Fraction		, Stream Co	inditions	Compound A	mounts			
Pressure Drop	0	Pa	 Flash Sp 	ec	Pressure a	and Enthalpy	(PH)		~
Efficiency (0-100%)	100		Tempera	ture			86.3005	К	~
Outlet Temperature	86.3005	K	Pressure				186000	Pa	~
Temperature Change	-218.103	К. у	Mass Flo	w			5	kg/s	~
		n.	Molar Fic	w			173.308	mol/s	~
Outlet Vapor Fraction	0.7		Volumetr	ic Flow			0.469725	m3/s	~
Heating/Cooling	1425.75	kW .	/ Specific	Enthalpy			-279.213	kJ/kg	~
Property Package Settings			Specific	Entropy			-2.0221	kJ/[kg.K]	~
Property Fackage Settings			Vapor Ph	nase Mole	Fraction		0.7		
Property Package	NRTL (1)	× 0	8						
Flash Algorithm	Default	×	Ð						

Fig2.1.14: Cooler conditions

Fig2.1.15: Cooler outlet properties.

Input Data	Results	Annotations	s Dynamics	Floating Table	\$
Stream Co	nditions	Compound A	Amounts		
Basis Solvent	Mole F	ractions			~ ~
Compou	und		Amount		Total: 1
Nitrogen	1			0.79	Normalize
Oxygen				0.21	Equalize
Water				0	Clear
					Accept Changes

Fig 2.1.16: Cooler outlet composition

The cool air stream then enters the throttling valve where itexpands, and its pressure gets further reduced by 86000 Pa. The stream leaving the throttling valve has a temperature of 80.6402 K and pressure of 100000 pa as shown below (see Fig 2.1.17, Fig 2.1.18 and Fig 2.1.19).

Calculation Parameters									
Calculation Type	Outlet Pressure	~							
PressureDrop	86000	Pa 🗸 🗸							
Outlet Pressure	100000	Pa 🗸 🗸							
Kv(max) (IEC 60534)	100	Calculate							
Use Opening (%) versus	Kv/Kvmax (%) relationship								
Kv/Kvmax (%) = f(OP(%)) ex	Kv/Kvmax (%) = f(OP(%)) expression								
		1.0*OP							
Valve Opening (%)	50								
Property Package Settings									
Property Package	NRTL (1)	 							
Flash Algorithm	Default	~							

Fig 2.1.17: Throttling valve conditions

Stream Conditions Comp Basis Mole Fraction Solvent Compound Narogen	Amount	~ ~ Total: 1	Stream Conditions C Flash Spec Temperature	Pressure and Enthalpy (PH) 80.6402		~
Solvent Compound Nitrogen	Amount	~ ~	11 · · · ·			~
Compound Nitrogen		V	Temperature	80 6402		
Nitrogen		Total: 1		00.0402	K	~
		Total. I	Pressure	100000	Pa	~
	0.79	Normalize	Mass Flow	5	kg/s	~
Oxygen Water	0.21	Equalize	Molar Flow	173.308	mol/s	\sim
Water		Clear	Volumetric Flow	0.851057	m3/s	~
		Accept Changes	Specific Enthalpy	-279.213	kJ/kg	\sim
			Specific Entropy	-1.8998	kJ/[kg.K]	\sim
			Vapor Phase Mole Fr	action 0.731156		

Fig 2.1.18: Throttling valve outlet composition

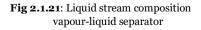
Fig 2.1.19: Throttling valve outlet properties

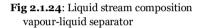
Then the stream is further directed to the vapor liquid separator, which separates the vapor phase of the stream from liquid phase. There are two streams coming out of the separator one being liquid (41.2% oxygen, 58.7%nitrogen) another being vapor (86.4% nitrogen, 13.5% oxygen). The liquid phase is the desired output (see Fig 2.1.20, Fig 2.1.21 and Fig 2.1.22).

Connections							
Inlet Stream 1	EXP/	ANDED /	AIR .		\sim	۶	
Inlet Stream 2					\sim	*	
Inlet Stream 3					~	۶	
Inlet Stream 4					\sim	۶	
Inlet Stream 5					\sim	۶	
Inlet Stream 6					\sim	*	
Vapor Stream	VAPO	OR STRE	EAM		~	۶	
Light Liquid Stream	LIQU	JID STRE	AM		\sim	۶	
Heavy Liquid Stream					\sim	۶	
Energy Stream					~	۶	<u>_</u>
Calculation Parameters							
Outlet Pressure Calculation		Inlet Mir	nimum				\sim
Override Sep. Temperat	ure		298.15	К			\sim
Override Sep. Pressure			101325	Pa			\sim



Fig 2.1.20: Vapour liquid separator conditions




Fig2.1.22. Liquid stream properties vapour-liquid separator

 \sim

In case the desired liquid phase is not of satisfactory composition, then it is not withdrawn as a product, but is recycled back to the process with conditions same as that of the feed.

Basis Mole Fract	ions		\sim	Stream Conditions	Compound A	nounts		
Solvent			\sim	Flash Spec	Pressure a	and Enthalpy (PH)		`
Compound	Amount		Total: 1	Temperature		80.6402	К	
litrogen		0.86442329	Normalize	Pressure		100000	Pa	
xygen		0.13557671	Equalize	Mass Flow		3.61819	kg/s	,
Water		0	Clear	Molar Flow		126.715	mol/s	
				Volumetric Flow		0.849553	m3/s	
			Accept Changes	Specific Enthalpy		-224.62	kJ/kg	
				Specific Entropy		-1.24453	kJ/[kg.K]	
				Vapor Phase Mole	Fraction	1		

Fig 2.1.23: Vapour stream composition vapour-liquid Separator

The vapor stream at temperature 80.64 K must be liquified. It is sent to the cooler of 100% efficiency. where its temperature is further reduced and it gets liquified (see Fig 2.1.25).

Flash Spec	Tempera	Temperature and Pressure (TP)					
Temperature			77	К	\sim		
Pressure		100000 Pa					
Mass Flow	3.61819 kg/s			kg/s	~		
Molar Flow	126.715 mol/s			~			
Volumetric Flow	0.00427289 m3/s			~			
Specific Enthalpy		-	431.044	kJ/kg	~		
Specific Entropy		-	3.86045	kJ/[kg.K]	~		
Vapor Phase Mole Fr	action		0				

Fig 2.1.25: Cooler outlet properties

The liquid stream containing 86.4% of nitrogen and 13.5% of oxygen must be separated to get exclusively liquid nitrogen. This is done using a component separator. The outlets of the component separator are nitrogen (liquid phase) at 77K and oxygen (vapor phase) (see Fig 2.1.26, Fig 1.1.27 and Fig 2.1.28).

Separation Fact	tors specified for		Outlet		
Separation Fact	ors				
Compound	Spec		Value	Units	
Nitrogen	Mass Flow	\sim	1	%	~
Oxygen	Mass Flow	~	0	%	~
Water	Mass Flow	~	0	%	~

Fig 2.1.26: Component separator conditions

			Str	eam Conditions Compo	und Amounts	
	Annotations Dynamics Floating Ta Compound Amounts	bles	Bi	Asis Mole Fractions		~
Flash Spec	Temperature and Pressure (TP)		~	olvent		~
Temperature	77	к	~	Compound	Amount	Total: 1
Pressure	100000	Pa	~	litrogen	0.81125025	Normalize
Mass Flow	2.61819	kg/s	~	Oxygen Water	0.18874975	Equalize
Molar Flow	91.0181	mol/s	~	vater	U	Clear
Volumetric Flow	0.00303537	m3/s	\sim			Accept Changes
Specific Enthalpy	-430.606	kJ/kg	\sim			
Specific Entropy	-3.82106	kJ/[kg.K]	\sim			
Vapor Phase Mole F	raction 0					

Fig 2.1.27: Component Separator Outlet properties

Fig 2.1.28: Component Separator Outlet composition

2.2 Design of the Heat Exchanger from the process

2.2.1 Heat exchanger properties from simulation

Heat Exchangers like shell and tube counter current heat exchanger are devices which transfer heat from hot fluid stream to cold fluid stream. In heat exchanger hot fluid temperature decreases and there is increase in temperature of cold fluid. By losing heat hot fluid is prepared for the throttling process and similarly by gaining heat cold fluid heated up for the compression process.

Object	HOT FLUID OUT	HOT FLUID IN	COLD FLUID OUT	COLD FLUID IN	
Temperature	304.403	373.015	353.275	303	к
Pressure	186000	186000	101325	101325	Pa
Mass Flow	5	5	1.3	1.3	kg/s
Volumetric Flow	2.35812	2.88963	0.00133822	0.00130661	m3/s
Mixture Density	2.12034	1.73032	971.437	994.942	kg/m3
Mixture Specific Enthalpy	5.93633	75.7013	-2336.83	-2605.15	kJ/kg
Mixture Molar Enthalpy	171.265	2184.01	-42098.6	-46932.6	kJ/kmol
Mixture Thermal Conductivity	0.0261055	0.030974	0.669873	0.617318	W/[m.K]
Molar Fraction (Mixture) / Nitrogen	0.79	0.79	0	0	
Molar Fraction (Mixture) / Oxygen	0.21	0.21	0	0	
Molar Fraction (Mixture) / Water	0	0	1	1	

Table 2.2.1: Heat Exchanger properties from the simulation

2.2.2 Energy balance

Energy balance calculation is done on a heat exchanger to determine operating parameters for hot and cold fluids such as inlet / outlet temperatures and flow rates [4,5,6].

г

$$E_{in} = E_{out}$$
(1)

$$E_{H_{in}} + C_{H_{in}} = E_{H_{out}} + C_{H_{out}}$$
5 × 75.7 + 1.3 × 2605.15 = 5 × 5.93 + 1.3 × 2336.83

 (\cdot)

$3765.195 \ kJ \cong 3067.529 \ kJ$

As the mass entering the heat exchanger is equal to the mass leaving it, it is considered that

$$m_{H_{in}} = m_{H_{out}} = m_H$$
 and $m_{C_{in}} = m_{C_{out}} = m_C$

2.2.3 Manual Design [4,5,6]

Step 1: Temperature of hot fluid and cold fluid

Mass flow rate of air = 5 kg/s

 $T_{H1 air} = 373 k = 100 °C$ $T_{H2 air} = 304 k = 31 °C$ $T_{C1 water} = 303 k = 30 °C$ $T_{C2 water} = 353 k = 80 °C$

Step 2: Average Temperature of hot and cold fluid

 $t_{Hair} = 655.5$ °C = 338.5 k (Molecular weight of air = 28.96)

 $t_{Cwater} = 55.5$ °C = 328 k (Molecular weight of water = 18.05)

Step 3: Determination of the transport properties of hot and cold fluids at their average temperatures [5].

Table 2.2.2:	Transport	properties	of two s	streams at	their average	temperature

Stream	NBP, °C	Avg T, °C	Density, kg/m³	Viscosity, kg/m.s	Thermal conductivity, W/m.k	Specific heat, kJ/kg.K
Water (cold)	100	55	990.28	5.1540*10-4	0.6425	4.178
Air (hot)		65.5	1.0435	2.03*10-5	0.0284	1.007

Step 4: Calculation of the mass flow rate of water from heat balance

$$m_{H} \times C_{p} \times (T_{2} - T_{1}) = m_{C} \times C_{pC} \times (t_{2} - t_{1})$$
(2)

$$5 \times 1.007 \times (373 - 304) = m_{C} \times 4.178 \times (353 - 303)$$

$$m_{c} = 1.6 \text{ kg/s}$$

Step 5: Calculation of inside and outside diameter of tubes. Since the tube sections are available at 14 BWG standard, the tube dimensions are:

14 BWG = 0.08'' = 2.302 mm from Kerns Table(3)

 $D_i = D_o - 2 \times thickness = 19.05 - 2 \times 2.302 = 14.98 mm$

 $D_{io} = 0,01906 \text{ m}; \quad D_{ii} = 0.01498 \text{ m}$

Assuming (15/16)" triangular pitch; 3/4th OD tubes with 14 BWG; Tube length of 2430 mm are laid in 15/16th triangular pitch; Velocity is 1 m/sec inside the tubesusing Table 10- 18 of Perry Handbook [1].

Step 6: Calculation of the LMTD for counter current flow

$$LMTD = \frac{d(T1) - d(T2)}{\ln \frac{d(T1)}{d(T2)}} = \frac{(373 - 353) - (304 - 303)}{\Box \Box (\frac{273 - 333}{304 - 303})} = 6.342 \text{ K}$$
(4)

Calculation of the Corrected LMTD:

$$R = \frac{373-304}{353-303} = 1.38and \quad S = \frac{353-303}{373-303} = 0.714;$$

$$dT_{LMTD} = F_T \times LMTD \text{ where } F_T \text{ from graph is } 0.95 \quad (5)$$

$$Corrected \ LMTD = 0.95 \times 6.342 = 6.02 \ K$$

Step 7: Calculation of the area required for heat transfer

$$\Box \Box \Box h \Box \Box \Box \Box \Box \Box \Box \Box \Box = \Box = \frac{\Box}{\Box \Box (\Box \Box) (\Box \Box \Box)} (6)$$
$$\Box \Box = 347.415; \ \Box \Box = 334.24$$
$$A = \frac{340.82 * 10000}{1000 * 6.34} = 53.75 \text{ m}^2$$

Step 8: Mechanical design [5]

(Assumption: Using low carbon steel of 14 BWG thickness outer diameter=3/4th inch (19.05 mm); Tube length=2430 m)

Number of tubes =
$$N_t = \frac{\text{Total surface area}}{\text{Individual heat transfer area}} = \frac{53.75}{0.1454} = 369.59 \approx 370 \text{ No. s}$$
 (7)

Individual heat transfer surface area = $3.14 \times 0.01905 \times 2.43 = 0.1454 \text{ m}^2$ (8)

Each Pass = $\frac{370}{2}$ = 185 No.s

Shell diameter: The nearest tube sheet tube hole count for tema class L or M for a triangular pitch of 370 tubes the shell diameter is540mmreferred from Perry Handbook Table 11 [1].Permissible deviation=3mm.

Number of baffles: (Assumption: the shell contains 25% cut segmented baffles spaced 112mm apart)

$$N_b = \frac{Tube \ length}{Baffle \ spacing} - 1 = 21 \ No. \ s \tag{9}$$

Pass partition plates=10mmselect pass partition plate thickness 10mm on channel head in tube side using IS Code Table 13.

Number and diameter of tie rods= 6 numbers of tie rods of 10mmusing IS Code Table 14.

Saddle support: The shell is mounted horizontally on 2 numbers of saddle support as shown in the drawing and provided with a banking saddle plate.

Tube sheet thickness: Minimum tube sheet thickness is 15mm; partition grove depth of 5 mm tube sheet thickness=20 mm (IS code Table 7)

Calculation of the shell thickness: Minimum shell thickness specified is 6.3 mm for safety and corrosion allowance select 10 mm. $D_s =$ Shell OD = 540+(2*10) =560mm using IS Code Table 14.

Step 9: Dimensions of nozzles

Shell side nozzle= 1 no inlet and 1 no outlet

$$\frac{c}{s} \text{ flow are of nozzle} = \frac{\text{volumetric flow rate}}{\text{operating economic fluid velocity}}$$
(10)

For liquid OEFV = 1-2 m/s
For gas OEFV = 1 m/s
Cross flow area of Nozzle =
$$\frac{5}{1.0435 * 1}$$
 = 4.79156 m2
Inner diameter of the nozzle = DNT for air = $\sqrt{\frac{4*4.79}{3.14}}$ = 2.469 m(11)
Alignment tolerance for standard nozzle using IS Code Table 16=1.5mm
Diameter including tolerance = 2471.5mm

Tube side:

Tube side nozzle= 1 no. inlet and 1 no. outlet

 $\frac{c}{s}$ flow area of the nozzle = $\frac{\text{volumetric flow rate}}{\text{operating economic fluid velocity}}$

For liquid OEFV = 1-2 m/s

For gas
$$OEFV = 1 \text{ m/s}$$

Cross flow area of Nozzle $=\frac{1.6}{990.28*2} = 8.078*10^{-4} \text{ m}^2$

Inner diameter of the nozzle = DNT for water = $\sqrt{\frac{4 * 8.078 * 0.0.0001}{3.14}} = 0.0320 \, mm$

Alignment tolerance for standard nozzle using IS Code Table 16=1.5mm

Diameter including tolerance = 33.5 mm

Step 10: Calculation of the inside heat transfer coefficient (h_{i0})

Dirt resistance: Assuming Rd=0.0005(m²K)/W; 14 BWG=0.08 inch = 2.032mm: Inner diameter= 14.98mm(di) using Perry Handbook table 11-3 [1].

Assuming velocity of 1 m/s

$$\begin{split} N_{\rm re} &= \frac{d_i v_i}{k_i} \rho_i = 28782.3(12) \\ N_{\rm pi} &= \frac{c_{\rm pi} \mu_i}{k_i} = 2.55 \end{split} \tag{13}$$

Sieder Tate Equation:

$$\begin{split} \frac{h_{i}d_{i}}{k_{i}} &= 0.023 \times N_{re}^{0.8} \times N_{pr}^{0.33} \times \phi \qquad (14) \\ h_{i} &= 6504.96 \frac{w}{m^{2}}.k \\ h_{io} &= h_{i} \times \left(\frac{d_{i}}{d_{o}}\right) = 5115.18 \frac{w}{m^{2}}.k \end{split}$$

Step 11: Calculation of the outside heat transfer coefficient (h_o)

By Colburn Analogy of HTC

$$\frac{h_0 d_{is}}{k_s} = 0.36 \times N_{re}^{0.55} \times N_{pr}^{0.33} \times \varphi^{0.14}$$
(15)

$$N_{re} = \frac{DisGs}{\mu s} Mass \, Velocity = G_s = \frac{m_s}{a_s}$$
Shell side $\frac{c}{s} flow \, area = a_s = \frac{ID * Baffle \, Spacing * Clearance}{Pitch}$ (16)

$$a_s = 0.0152 m^2$$
$$G_s = 330.68 \frac{kg}{m^2 \cdot s}$$

For Triangular Pitch $D_{is} = 0.0183 \text{ m}$

$$\begin{split} N_{re} &= 298100.68 \\ N_{pr} &= .6.9 \\ \frac{h_o d_{is}}{k_s} &= 0.36 \times N_{re}^{0.55} \times N_{pr}^{0.33} \times \phi^{0.14} \\ h_o &= 11302.025 \, W/m^2.K \\ h_o &= 11302.025 \, W/m^2K \end{split}$$

Calculation of the Overall heat transfer coefficient (UD)

$$\frac{1}{U_{d \ Calculated}} = \frac{1}{h_{lo}} + \frac{1}{h_o} + R_d \tag{17}$$

$$U_{d \ Calculated} = 1275.14 \frac{W}{m^2}.K$$

$$U_{d \ Calculated} > U_{d \ Assumed}$$

- 1. Hence the heat exchanger design is valid.
- 2. Heat Exchanger is Overdesigned.
- 3. The assumption $U_d = 1000 \text{ W/m}^2\text{K}$

Neglecting R_d we get
$$U_{d \ Calculated} = 3521.421 \frac{\text{W}}{\text{m}^2}$$
. K

$$R_d = \frac{\text{Ud calculated} - \text{Ud assumed}}{\text{Ud calculated} * \text{Ud assumed}} = 7.160 \times 10^{-4} \text{ m}^2 \text{K/w}$$

$$R_{d Provided} > R_{d Required}$$

Therefore, the calculated overall heat transfer coefficient is well within the design criteria.

2.2.4 Summary sheet of heat exchanger manual design

```
Length of the tube = 2430 mm
Triangular pitch = 254mm
```

Baffle space = 112 mm apart No of tubes = 370 No.s Total surface area = $53.75m^2$ Shell diameter = 540 mm No of baffles = 21 No.s No of tie rods = 6 No.s Diameter of tie rod = 10mm Saddle support = 2 No.s Tube sheet thickness =20 mm OD of the shell = 560 mm Diameter of the nozzles Tube nozzle = 2 Nos; ID of Nozzle = 293.5mm Shell Nozzle= 2 Nos; ID of Nozzle =33.5mm Shell Thickness = 10 mm Individual heat transfer coefficient: Tube side=5115.18 W/m2K Shell side=11302.025W/m2K Overall heat transfer coefficient Ud=1275.14 W/m²K Assumed Ud is 1000 W/m2K

3 Results and Conclusions

The process flow sheet for the liquefaction of nitrogen using the Linde cycle was developed using DWSIM simulation software. Manual design of the heat exchanger from the process was done. The calculated overall heat transfer coefficient of the heat exchanger was well within the design criteria.

This work gave us an insight into the industrial production of liquid nitrogen. Through the simulation, we have observed and learnt about the effect of various parameters like pressure, temperature, mass flow rate etc. on the yield of the final product. This simulation guided us to determine the optimum process conditions easily and to get the desired result efficiently.

References

- [1] Perry, R. H. and Don W. G. (2008). Perry's Chemical Engineers' Handbook, McGraw-Hill New York
- [2] Abhijit, D. (2015). Nitrogen and Helium Liquefaction design and simulation using Aspen Plus, Vol 1, pp. 40-48, 2015.

- [3] Chen, Q. and Prasad, R. (1999). Simulation of vapour-compression refrigeration cycles using HFC134A and CFC12,International Communications in Heat and Mass Transfer, Vol. 26, pp.513-521.
- [4] Treybal, R.(1968). Mass-transfer operations, McGraw-Hill New York.
- [5] Ceyhun, Y., Tugberk, H.C., Birnur, O. and Mehmet, K. (2019). Thermodynamic performance analysis of gas liquefaction cycles for cryogenic applications, Journal of Thermal Engineering, 62-75.
- [6] Cenker, A., Servet, G. (2022). An application of conventional and advanced exergy approaches on a R41/R1233ZD(E) cascade refrigeration system under optimum conditions, Vol 8, No. 2, pp. 182-201.