
Systematic Literature Review in
Software Test Data Generation
Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3
Computer Science & Engineering Department, I.K.G. P.T.U Kapurthala, Punjab1,3
D.A.V. Institute of Engineering & Technology, Jalandhar, Punjab2
Corresponding author: Gagan Kumar, Email: gagan.daviet@gmail.com

In software development, software testing is an important practice which com-
prises of different activities. It is a time-consuming and cost-oriented process. In
testing, it is very important to select the test data generation process wisely be-
cause testing efficiency is highly dependent on the data used and it may affect the
cost and time. Soft computing algorithms explore test data in search-based soft-
ware testing to optimize the coverage metric, which can be called an optimization
challenge. SomeMeta-Heuristics algorithms (Artificial Bee Colony, Particle Swarm
Optimization, Genetic Algorithm, Firefly Algorithm and Ant Colony Optimization
Algorithms) are selected in this paper for comparative study along with Artificial
Immune Algorithms (Negative Selection Algorithm, Clonal selection, and Hybrid
Negative Selection Algorithm). The Immune algorithm also has a significant im-
pact in engineering applications and in the field of software test data generation.
A survey on automated test data generation has been done on the various criteria
such as type of objective function use, type and number of experiments performed
for specific technique, comparison with other techniques, types of parameters used
and the performance of the algorithm. From this survey it has been observed that
the immune algorithms outperform meta-heuristic algorithms in terms of average
coverage, average generation, cost, and average test data generated. But somehow
the number of comparisons to generate test data in immune algorithms is more
than the Metaheuristic algorithms.

Keywords: Test data generation, ACO, NSA, PSO, GA, ABC, FA.

2023. In Vikram Dhiman & Pooja Dhand (eds.), Emerging Trends in Engineer-
ing and Management, 91–107. Computing & Intelligent Systems, SCRS, India.
https://doi.org/10.56155/978-81-955020-3-5-11

1. Introduction

Testing is an important activity in the software development life cycle. It is the most time-
consuming process in any software development process. Reliability of software depends on the
various testing activities such as size of the software and test data[1]. As the size of the software
grows, testing becomes a more laborious task to perform, of all testing activities test case
generation includes significant bit of work since it influences the proficiency of the testing process
before inception of the software[2]. When software becomes more complex, it is very difficult to
test software to produce accurate test results. Many approaches have been employed and used in
the state of the art for different programming languages, technologies, and environments to
produce test cases that make the testing more effective and robust. The most influential techniques
were classified by Anand et al into five groups such as symbolic execution and program structural
coverage testing, model-based test case generation, combinational testing, adaptive random testing,
and search-based testing. The most important technique in the category classified by Anand et
al.,2015[3] is search-based research. The main objective of search-based software testing (SBST) is
to explore successful test data that maximizes the software structure coverage metric.

Random testing [2] is a widely used and low-cost technique that randomly selects test inputs from
valid range, its performance, however, is at lower side when the inputs are subject to complex
constraints. SBST overcome the issues associated with random testing and generate quality test
data even for large and complex problems. In SBST, by formulating the problem as a blended
problem, some meta-heuristic search techniques have been used for test case generation [2].

Harman and Jones say that search-based software testing is an evolving field, and meta-heuristics
are perfect for software engineering to be implemented by reformulating the problems of
conventional software engineering [4] and a fitness function is defined to evaluate the quality of a
solution in terms of the coverage metric while formulating the problem. The meta-heuristic does
not make assumptions about the problem characteristics and provides rational results for problems
of complexity that cannot be solved by empirical methods because of the dimensionality of the
problem. Methods of search-based software test data generation that is being reviewed by some
popular researches in the field of search based testing are (Harman , Mansouri, and Zhang)
[5],Harman et al., [6], McMinn[7]. Meta-heuristics algorithms provide an efficient way to solve the
problem of test data generation and to locate the search space. Some of the widely applied meta-
heuristics algorithms that are centered on various natural phenomena, are applied by the
researchers in the field of test data generation such as Particle Swarm Optimization (PSO)
algorithm[9] , Genetic algorithm [10], Artificial Bee Colony (ABC) [11], Ant Colony optimization
(ACO)[12] , Firefly algorithm (FA) [13] are some examples of most popular meta-heuristic
algorithms. It is mentioned in all these reviews that there are still many areas relevant to search-
based software engineering and many interesting research challenges ahead.

2. Artificial Immune Systems (AIS)

Artificial Immune Systems are computational ideal models that have a place with the
computational knowledge family and are enlivened by the natural safe framework. Over the past
decade, researchers have attracted a lot of interest in designing immune based models and
technique to solve complex software engineering problems.

 Negative Selection

 Clonal Selection

Are the three major AIS algorithms commonly used in the field of engineering!
One of the most important strategies in the Artificial Immune system (AIS) is the Negative
Selection Algorithm (NSA) a branch of computer intelligence model. The biological action of the
Natural Immune System (NIS), a compound biological network that uses fast and active techniques
to protect the body against a particular foreign body called antigens, has inspired AIS [14]. AIS is
one of the numerous forms of biological systems inspired algorithms, such as evolutionary
algorithms, swarm intelligence and neural networks, which have attracted a lot of the attention of
researchers. The goal is to develop immune- based methods to solve complicated computations
[15].Forrest (1994) implemented NSA, and in fields such as computer security, pattern recognition,

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

92

anomaly detection, and faults detection have been added. The primary objective of the NSA is to
differentiate between samples of self and non-self when only self-samples are available. Specifically,
the objective is to cover non - self space with a specific number of detectors [16].Frank Macfarlane
Burnet proposed the notion in 1957 to explain the wide variety of antibodies generated during the
commencement of the immune response. Clonal selection theory is an immunological scientific
hypothesis that explains how immune system cells (lymphocytes) respond to distinct antigens
invading the body. It has been widely accepted in the field of various engineering applications.[16]

3. Related work on Test Data Generation

In recent years, some studies on PSO, ABC, GA, ACO and FA for test data/cases generation have
been presented to literature.
Xiao-Mei Zhu & Xian-Fang Yang[17] projected a new approach based on PSO, in which inertia
weight is adjusted according to fitness value. It uses branch Coverage as fitness criteria. It shows
broad application prospective as compared to immune genetic algorithm and PSO. It outperforms
IGA and PSO in terms of convergence speed, efficiency, and performance. Sanjay Singhal,
Dharminder Kumar, H.M.Rai and Priti Singhal [18] projected a hybrid approach by combining GA
and PSO(GPSCA). It uses data flow coverage by applying dominance concept between two nodes
and multi-objective coverage criteria. They have conducted the comparison of the proposed
approach with GA and PSO using seven benchmark programs, the proposed approach
outperformed GA and PSO for coverage ratio and test data generation. Aiguo Li and Yanli
Zhang[19] projected a new approach using traditional PSO with new objective function for all path
coverage criteria. They have done the comparison of the projected approach with single path data
for triangle classification problem, which shows the proposed approach outperformed the single
path data for cost and time.

Shailesh Tiwari, K.K.Mishra and A.K Misra [20] projected new approach i.e PSO-TVAC (modified
time varying acceleration) using code coverage objective criteria for five real world problems. They
have conducted the comparison of the proposed approach with the exiting PSO approaches. The
results show that the proposed approach has better coverage capability, control on local and global
optimum. Chengying Mao , Xinxin Yu and Jifu Chen[9] projected approach based on PSO for test
data generation i.e TDGen_PSO using branch coverage criteria for five real world programs. They
have made comparison of proposed approach with TDGen_GA and CL-PS, the results shows that
the proposed approach outperforms in terms of coverage and test data generation. Dan Liu,Xuejun
Wang and Jianmin Wang[21] projected an approach IGA based on Genetic Algorithm(GA) for
automatic test case generation. They have done comparison of IGA with traditional GA for triangle
classification problem using branch fitness criterion. The improved algorithm adopts real number
coding and principles of large coverage. The improved GA outperformed traditional GA in terms of
convergence speed and higher test data generation efficiency. Moataz A. Ahmeda and Irman
Hermadib[22] projected a GA based test data generator using multi path fitness. The approach can
synthesize multiple test data to cover multiple target paths. They have performed the comparison of
the proposed approach with Lin’s & Pei’s work based on GA using seven real world benchmark
problems. The proposed approach is effective and efficient then the Lin’s & Pei’s work. Kewen Li
Zilu and Zhang Jisong Kou [23] projected an approach GPSMA by using PSO inside GA. They have
replaced the mutation operation in GA based on population division. The proposed approach is
compared with GA and PSO for triangle classification problem. The proposed approach avoids
premature generation and improved convergence speed. Gen.iana and Ioana [24] is projected a
new approach based on three evolutionary approaches GA, PSO and SA. They compared proposed
approach with GA, SA and PSO using ten benchmark problems.

 In the proposed approach they have evaluated the distance between the actual paths. The proposed
approach outperformed the GA, PSO and SA in terms of quality data generation and high
convergence. In the proposed approach they have used annealing mechanism into GA along with
similarity-based fitness function. They compare the proposed approach with GA and Random
testing for triangle classification Problem. Soma Sekhara ,Babu Lam & M.L.Hari [25] projected an
approach by combining the functionalities of scouts, employed and onlooker bees in ABC
algorithm. They compared the approach with ABC, GA and ACO using benchmark triangle
classification program by using independent test path coverage criteria. The proposed approach is a

Emerging Trends in Engineering and Management

93

no pheromone-based approach which does not required to update the pheromone level which
improve the time complexity and the number of tests required are also at low level. Surinder Singh
Dahiya et al.[26] Proposed a static based symbolic execution approach using ABC algorithm with
branch distance as objective function. They have compared the approach with average test cases
generated path (ATCPP) and average percentage coverage (APC) metrics using ten real world
benchmark programs. The said approach does not perform well for in the elevated value of ATCPP.
Bharti Suri & Prabhneet kaur [27] proposed a regression augmentation testing approach based on
ABC algorithm with branch distance as objective function. They have compared the functionality of
the existing algorithm using eight real world benchmark programs for test suites. The proposed
approach yields 100% path coverage in regression augmentation testing.

D.Jeya Mala,M.Kamalapriya [28] have proposed ABC based approach by applying heuristic in each
test case with path coverage as objective function. They have compared the functionality of the
proposed approach with ACO using six benchmark programs. The proposed approach generates
optimal results and converges with a smaller number of test runs. Shunkun Yang, Tianlong Man,
and Jiaqi Xu [29] proposed an approach based on ant colony optimization in which they have
improved local pheromone strategy, pheromone volatilization co-efficient and global path
pheromone with statement coverage, branch coverage and condition coverage as fitness value. They
have compared the proposed approach with random algorithm and genetic algorithm suing
benchmark program triangle classification. The proposed approach can effectively improve the
search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations.
Chengying Mao, Lichuan Xiao, Xinxin Yu & Jinfu Chen [30] proposed an approach in which they
reformed ACO into discrete version by redefining local transfer; global transfer and pheromone
update rule with customize branch fitness function. They have compared the proposed approach
with GA, SA and PSO using eight benchmark programs. The proposed approach outperforms the
GA and SA and comparable to PSO. Pooja Sharma [31] has proposed an approach for automated
software testing using meta heuristic technique based on improved ant algorithm in which she used
statement, branch and modified decision/coverage as an objective function. The comparison of the
proposed approach has been done with the existing RND, GA and different variants of ant
algorithms for classic triangle classification and collision avoidance system. The proposed approach
has better coverage and minimal generation as compared to RND, GA and different variants of ant
algorithms. Praveen Ranjan Srivastava and KM Baby [32] proposed a meta-heuristic technique
based on ACO for state transition testing. They have done experimentation with the proposed
approach by selecting the enrolment statement machine and transition system state as
experiments; they compared the proposed approach with GA and Software Transition testing. The
proposed approach has better coverage than GA.

 Faeghe Sayyari and Sima Emadi [33] has proposed an ACO and model based testing approach.
They have used Markov model for the re-formation of ACO. The comparison of proposed approach
has been done with ACO data flow testing and ACO Markov Chain for single telephone experiment.
The Proposed approach generates quality data as compared to ACO data flow testing and ACO
Markov Chain. Shayma Mustafa , MohiAldeen Radziah Mohamad and Safaai Deris [34] have
proposed a new approach based on artificial immune system in which they have use the application
of negative selection algorithm . They have compared the proposed approach with random testing,
genetic algorithm and ant colony optimization using eleven benchmark programs. The proposed
approach outperforms other methods in reducing the number of test data that covers all program
paths by calculating the hamming distance. Shayma Mustafa et al.[35] projected a new hybrid
approach based on NSA and GA for automated test data generation, the experimentation of the
projected approach has been done on 11 real world programs, the projected approach is also
compared with random testing approach and negative selection algorithm. The results show that
the projected approach has high path coverage with minimum number of generations. Ankit
Pachauri and Gursaran [36] has projected test data generation approach based on Clonal selection
algorithm. They have used AI and NBD Approximation level with normalized branch distance as
objective function to validate the test data. Sthamer triangle classifier problem has been used for
experimentation with approximated experiment runs. The results show that the projected approach
has poor generation and coverage ratio. Poonam Saini and Sanjay Tyagi[37] has also projected an
approach based on Clonal Selection algorithm . They have used Korel Distance function for branch
predicate as objective function to validate the test data. The projected approach is compared with

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

94

random testing and genetic algorithm by considering nine real world programs for
experimentation. The projected approach generates optimal test data and has an elite test data
generation technique.

The main objective of this paper is to explore the search capabilities of Meta–heuristic algorithms
ACO, GA, PSO, ABC, FA and Artificial Immune algorithm NSA on benchmark problems in software
test data generation, including triangle classification, quadratic equation, even odd, largest number,
telephone system etc. Meta-heuristic algorithms such as ACO, GA, PSO, ABC, FA has excellent
search capabilities, but all these algorithms have somehow lag in complete coverage or may be
sometimes struck in local optima. The Artificial Immune algorithms on the other side present
significant improvement in the search capability Negative Selective algorithm, Clonal Selection and
Hybrid NSA-GA are latest algorithms that explore the capability of test data generation in the
significant manner. An immune algorithm has significant impact on the quality and coverage
capabilities of test data generation. Besides, designing an objective function is another important
subject that should be determined in the experiments [38]. Designing a good objective function
allows the algorithm to monitor the optimum more accurately and quickly in the search space.
The rest of the paper is structured as follows. Software test data generation is formulated in the
second section and then a section is devoted to the generation of search- based test data. A brief
overview of Metaheuristic is given in the next section as pseudo codes. Survey of the Metaheuristics
algorithms and AIS algorithms has been done on SBST and are recorded in section 4. Survey has
been done is section 5 and Finally, the discussion and conclusion are dedicated to Section 6.

4. Search Based test data generation

Software testing is an essential task in software development to satisfy the requirements
specification of the software under process. Testing takes the bigger portion of the development
process. A well-designed test plan must be desired to align all the testing activities at different
milestones.

In software testing main goal is to decide the issues given below [39]

 Maximum coverage should be achieved with minimal test cases.

 Design the well modeled structure of the developing system.

 Well planned testing activities to yield optimal results.

Opting for test data that yields maximum coverage can be attain either in manual or in automated
way. Selection of the testing process depends upon the size of the software, to validate large size
program automated testing is more preferred as compared to manual testing, as manual testing is a
time consuming and laborious activity, for this reason the popularity for the automated testing has
raised and being adopted by many researchers. Many new techniques have been proposed for
automated test data generation, which have shown the significant impact on the quality of the
product being developed. In, literature different test data generation architectures have been used
[40].

In most of the studies, program code is converted into a control flow graph (CFG), which represents
the graphical flow of the sequence of statements related to source code of the relevant program[41].

A CFG is defined as a directed graph
 G = (N, E, s, e)
 N – Set of nodes
 E - No of edges
 s- Starting node
 e – Exit node
CFG must have a unique Entry s and Exit node e. That the program is going to start to execute and
terminate the control flow graph for minmax problem is presented in fig. 1.

Emerging Trends in Engineering and Management

95

Fig. 1: Control Flow Graph for Minmax Problem

Selecting an appropriate input that passes through the different predicates (Statement, Branch and
Path) in CFG can be considered as an optimization problem, which aspires to maximize the
coverage of the source code. Therefore, Search based software testing techniques based on
optimization algorithms and refined by a fitness function for improved quality has received
attention of the researchers in past years [42]

Harman [5] has proposed a generic search based test data generation technique. The flow of the
working of test data generation is represented in the form of sequence diagram in Fig 2.

Fig 2 Sequence diagram for Test Data Generation

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

96

5. Meta–heuristic & Artificial Immune Algorithms for Test
Data Generation

Researchers have applied the functionality of various meta-heuristic algorithms based on different
natural phenomena in the field of test data generation. Algorithms who show significant impact in
test data generation are Particle Swarm Optimization (PSO) algorithm, Ant Colony optimization,
Artificial Bee Colony (ABC), Genetic algorithm (GA) and Firefly algorithm (FA).

The Immune algorithms are also gaining popularity in various engineering applications, even in the
field of test data generation. The outcome of immune algorithms is having upped edge than Meta –
heuristic algorithms. Negative Selection algorithm (NSA) & Clonel Selection algorithm are widely
applied in the field of software testing. The Pseudo Codes of meta – heuristic and artificial
algorithms are presented as follows:

5.1 PSO algorithm : introduced by Eberhart and Kennedy in 1995[9], is a swarm-based meta-
heuristic that models the social behavior of bird flocking or fish schooling. The Pseudo Code of PSO
is as follows:

 Begin
 Initialize Particles randomly
 Repeat until PBest != target_reached
 Evaluate PBest for each particle
 If current position > PBest than
 Update: PBest
 Else
 Assign: gBest = PBest
 endif
 Compute velocity
 Update particle position
 If target_reached
 End
 Else
 goto step 4

5.2 Artificial Bee Colony (ABC): algorithm developed in 2005 by Karaboga [11] mimics the
for aging behavior of honey bees and has been applied to many problems encountered in different
research areas . The Pseudo Code of ABC is as follows:

1. Begin
2. Initialize population randomly
3. Repeat steps 4 to 10 until convergence! = expected
4. Employed bee phase
5. Onlooker bee phase
6. Scout bee phase
7. If convergence== expected
8. End
9. Else
10. Goto step

5.3 The ant colony optimization algorithm (ACO): introduced by Marco Dorigo[12], in the
year 1992 and it is a paradigm for designing Meta heuristic algorithms for optimization problems
and is inspired by the foraging behavior of ant colonies. Ant Colony Optimization targets discrete
optimization problems and can be extended to continuous optimization problems which is useful to
find approximate solutions[12]. The Pseudo code of ACO as follows:

1. Begin
2. Initialize parameters
3. Repeat while iterations < n
4. Generate random population

Emerging Trends in Engineering and Management

97

5. Calculate fitness
6. Update pheromone
7. Apply transition
8. create new_path
9. If iteration=n
10. End
11. Else
12. Goto step 4

5.4 Genetic Algorithms (GA) is proposed by Professor Holland in Michigan University of the
United States in 1975, which was inspired by the biological evolution. GA is based on the principle
of natural selection and universal search optimization algorithm of the genetic
mechanisms[10][43]. The Pseudo Code of GA is as follows:

1. Begin
2. Initialize Population
3. Repeat while Population! = quiet
4. Select Population
5. If new_population=quiet
6. End
7. Else
8. Cross overs
9. Mutations

10. Goto step 4

 5.5 Firefly Algorithm: FA was developed by Xin-She Yang, inspired by the flashing behavior of
fireflies. Mechanisms of firefly communication via bioluminescent flashes and their
synchronization have been imitated effectively in various techniques of wireless networks design ,
dynamic market pricing , mobile robotics , economic dispatch problem , and structural
optimization problems.[13] . The Pseudo Code of Firely is as follows:

1. Begin
2. Repeat steps 3 to 9 until iteration 1=max_generation
3. Initialize Firefly
4. Evaluate objective function
5. Generate rank of Firefly
6. Compute best_function
7. Compare best_function= firefly_movement
8. If iteration=max_generation
9. Display result
10. Else
11. Goto step 3
12. End

5.6 Negative Selection Algorithm: Negative Selection Algorithm (NSA)’is one of the most
important methods in an Artificial Immune System’ (AIS)[14], It was introduced by Forrest (1994)
which is a branch of computational intelligence models. AIS was inspired by the biological behavior
of Natural Immune System’(NIS), which is a compound biological network using fast and active
techniques to defend the body versus a specified foreign body called antigens. AIS are one of the
different kinds of algorithms inspired by biologic systems. Its objective is to develop immune-based
techniques for solving complicated computation[14]. The Pseudo Code of NSA is as follows:

Generation_Stage
1. Begin
2. Generate Random_Detectors
3. If Detectors=Self
4. Goto step 2
5. Else
6. Accept as New_Detector
7. If Detectors=Enough

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

98

8. Goto Detection_Stage
9. Else
10. Goto step 2

Detection_Stage
1. Begin
2. Input New_Sample
3. If (New_Sample=Detector)
4. Self
5. Else
6. Non-self
7. End

5.7 Clonal Selection Algorithm: Clonal Selection algorithm belongs to the field of artificial
immune system. The clonal selection algorithm is inspired by the clonal selection theory of
acquired immunity.[16] The clonal selection theory credited to Burnet was proposed to account for
the behaviour and capabilities of antibodies in the acquired immune system.[44] The theory
suggests that starting with the initial repertoire of general immune cells, the system is able to
change itself the CSA was designs as a general machine learning approach and has been applied to
pattern recognition, functional optimization , combinational optimization and test data generation
domain[36]. The Pseudo code of Clonal algorithm is as follows:

1. Begin
2. Initialize Antibodies Randomly
3. Repeat until antibodies > max_antibodies
4. Evaluation_Chamber = Antibodies
5. Compute Affinity_extent
6. If Affinity_extent > threshold
7. Print mature antibody group
8. Else
9. Arrange antobody based on affinity
10. If antibodies > max_antibodies
11. Goto step 6
12. Else
13. Print first antibody
14. Goto step 3

The main objective of this paper is to explore the search capabilities of Meta–heuristic algorithms
ACO, GA, PSO, ABC, FA and Artificial Immune algorithm NSA on benchmark problems in software
test data generation, including triangle classification, quadratic equation, even odd, largest number,
telephone system etc. Meta-heuristic algorithms such as ACO, GA, PSO, ABC, FA has excellent
search capabilities, but all these algorithms have somehow lag in complete coverage. The Artificial
Immune algorithm NSA is new approach in generation of test data. An immune algorithm has
significant impact on the quality and coverage capabilities of test data generation. Besides,
designing an objective function is another important subject that should be determined in the
experiments [4]. Designing a good objective function allows the algorithm to monitor the optimum
more accurately and quickly in the search space
.

6. Software Test Data Generation: Survey

Table 1 Comparative Study of different test data generation techniques

Auth
or

Techniqu
e Adapted

Fitness/Obj
ective
function
used

No. of
Experime
nts

Compariso
n with
other
techniques

Findings

Performa
nce
Measure
Paramete
r’s
adopted

(Sekha
ra et

ABC Based
by

Independent
Test Path

Triangle
Classificati

ABC, GA &
ACO

Less No. of
Test

Path
Coverage,

Emerging Trends in Engineering and Management

99

al.,
2012)
[25]

combining
scouts,
employed &
onlooker
bees

Coverage
Criteria

on Required,
Low Time
Complexity
for Test
data
Generation,
Faster &
efficient

Path
Sequence
Compariso
n.

(Dahi
ya,
Chhab
ra and
Kuma
r,
2010)
[26]

Static Based
Symbolic
Execution

Branch
Distance

10 Real
World’s
Problem

Average Test
cases
Generated
Path
(ATCPP) and
Average
Percentage
Coverage
(APC)
metrics

Does not
Perform
Well for
High Value
of ATCPP

Average
Test Cases
Generated
Path
(ATCPP) &
Average
Percentage
Coverage
(APC)
Metrics

(Malh
otra,
2014)
[45]

Compariso
n

9 real world
Programs

GA & ACO

Yields
Better
Results for
Large and
Complex
Problems

No. of
Paths
Covered,
Number of
Iterations,
Number of
Test Cases.
Time taken
for number
of
Generation

(Suri
and
Kaur,
2014)[
27]

Regression
Augmentati
on testing

Branch
Coverage

8 Test Suites
Yields 100
% coverage

Path
Coverage

(Mala
and
Nadu,
2009)
[28]

ABC based
approach
with
heuristic in
each test
case.

Path
Coverage

6 ACO

Generate
Optimal
Results and
Converges
with a
smaller
Number of
Test Runs.

Time
Complexity,
Path
Coverage

(Zhu,
2010)[
17]

Improved
PSO

Branch
Coverage
Fitness

Triangle
Classificati
on

Immune
Genetic
Algorithm
and PSO

Outperform
IGA & PSO
in terms of
Convergenc
e Speed,
Efficiency
&
Performanc
e

Average
Iteration
Time,
Convergenc
e Rate.

(Singl
a et
al.,
2011)
[18]

Hybrid GA
&
PSO(GPSC
A)

Multi -
Objective

7

GA & PSO

High
Coverage
Ratio,
Less
Generation.

Coverage
Ratio
No. of Test
Cases.
No. of
Generation

(Li
and

Traditional
PSO

New All Path
Objective

Triangle
Classificati

Single Path
Data.

Cost of
Time is

Cost and
time of test

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

100

Zhang
,
2009)
[19]

With new
objective
function

Function on & Binary
Search

Half as
compared
to Single
Path

data
generation

(Tiwa
ri,
Mishr
a and
Misra,
2013)[
20]

PSO-TVAC
(modified
Time
Varying
Acceleratio
n.

Code
Coverage.

5
Benchmark
Programs

PSO Variants

Better
Performanc
e and Great
Code
Coverage
Capability,
Control on
Local and
Global
Optimum

Code
Coverage
and test
case
Generation.

(Mao,
Yu
and
Chen,
2012)
[9]

PSO Based
Test Data
Generation
(TDGen_PS
O)

Branch
Coverage

5 Real
World
Programs

TDGen_GA,
CL-PS

Outperform
s
TDGen_GA
and CA-
PSO in
terms of
Coverage &
Generation
s

Average
Coverage,
Successful
Rate,
Average
Generation
s and
Average
Time

(Liu,
Wang
and
Wang,
2013)[
21]

Modified
Genetic
Algorithm

Branch
Fitness

Triangulati
on network

Traditional
GA

Avoid
Premature
Convergenc
e. Fast
Convergenc
y, High test
data
generation
efficiency

Total No. of
Coverage
Time
Coverage
Rate

(Ahme
d and
Herm
adi,
2008)
[22]

GA Based
Test data
Generator

Multi Path
Fitness

7
Lin;s & Pei’s
work based
on GA

Synthesize
multiple
test data,
More
Effective &
Efficient
than
similar
tools

Average
Generation
Average
Coverage

(Gupt
a and
Applic
ations,
2014)[
46]

GA Branch 11
Random
Testing

Find more
error prone
paths,
reduce
Developme
nt Cost &
Improve
Efficiency

Paths
Identificati
on, Cost &
efficiency

(Li,
Zhang
and
Kou,
2010)[
23]

PSO used
inside GA

Individual Sa
test Case

Triangle
Classificati
on

GA and ACO

Maintain
Colony
Polymorphi
sm, Avoid
Premature
Convergenc
e. Improve
Convergenc
e Speed

Test Data
Generation,
Test Data
Convergenc
e, Colony
Maintenanc
e

(Zhan
g and

Anneal
Mechanism

Similarity
Based

Triangle
Classificati

GA and
Random

Preserve
the best

Selection &
Elitist

Emerging Trends in Engineering and Management

101

Wang,
2011)[
47]

into GA Fitness
Function
(Hamming
Distance)

on testing probability,
Effective &
Efficient
than other
techniques

Crossovers
Mutation
Simulated
Annealing
and
Convergenc
e

(Latiu,
Cret
and
Vacari
u,
2012)[
24]

Based on
Three
Evolutionar
y
Approaches
GA, SA &
PSO

Approximati
on Level and
Branch
Distance
(Evaluating
the Distance
between
actual path)

10
GA, SA &
PSO

SA
generated
quality
Data

Convergenc
e

(Mao
et al.,
2015)[
30]

Local
transfer,
global
transfer,
pheromone
update has
been re
defined.

Customize
Branch
fitness
function

8
Benchmark
s programs
has been
used

Genetic
Algorithm,
SA and PSO

Outperform
Genetic
Algorithm
and
Simulated
Annealing,
Comparabl
e to PSO

Average
Coverage,
Successful
rate,
Average
Convergenc
e,
Average
time

(Faeg
he
sayya
ri and
sima
emadi
, 2015)

Markov
model

NA
Single
Telephone
Experiment

ACO Data
Flow testing
& ACO
Markov
Chain

Generate
quality

Pheromone
-factor,
Cost, and
user
Parameters

(Mao
et al.,
2012)[
48]

Local
Transfer,
Global
transfer,
pheromone
update has
been re -
defined.

Branch
fitness
function

5
Benchmark
s programs
has been
used

GA, SA, ACO
Outperform
s

Average
Coverage,
Successful
rate,
Average
Convergenc
e,
Average
time

(Yang,
Man
and
Xu,
2014)[
29]

Improved
Local
Pheromone
strategy
and
pheromone
volatilizatio
n Co-
efficient
and Global
Path
Pheromone

Statement
Coverage,
Branch
Coverage and
Modified
Condition/D
ecision
Coverage.

Triangle
classificatio
n and
collision
detection.

Random
Algorithm
and Genetic
Algorithm

Improved
coverage
and
generation.

Average
Coverage
and
Average
Generation

(Sriva
stava,
2010)[
32]

State
Transition
based
testing and
its coverage
level

NIL

The
Enrolment
state
machine,
transition
system
state
machine

GA & STT
(Software
Transition
testing)

Better
coverage
than GA

Complete
Coverage,
Generation
of Optimal
Test
Sequence,
Enhanceme
nt of the

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

102

Figures 3(a), 3 (b), 3 (c) , 3(d) presents the graphical survey of Automated test data generation.

Tool.

(Shar
ma,
2014)
[31]

Ant Colony
Optimizatio
n

Statement,
Branch &
modified
decision/cov
erage

Classic
triangle
Classificati
on, &
collision
avoidance
system

RND, GA,
SACO & ACO

Average
Coverage,
Average
minimal
generation

Generation
of Optimal
& Minimal
Test
Sequence
for
Complete
Coverage.

(Mohi-
Aldeen
,
Moha
mad
and
Deris,
2017)[
49]

NSA
Hamming
Distance

Benchmark
Program
Triangle
Classifier

Random
testing & GA

NSA is
efficient in
time of
execution &
effective in
generation
of test data.

Test Data
Generation,
Execution
Time

(Mohi-
Aldeen
,
Moha
mad
and
Deris,
2016)[
34]

Application
of NSA

Hamming
Distance

11 Real
world
Benchmark
programs

Random
Testing, GA
& ACO

Outperform
s other
methods in
reducing
the number
of test data
that covers
all program
paths.

Path
Coverage,
Effectivene
ss
&
Efficiency.

(Mohi-
aldeen
,
Moha
mad
and
Deris,
no
date)[
50]

Negative
Selection
Algorithm

Hamming
Distance

Benchmark
Program
Triangle
Classifier

Random
Testing

Outperform
s Random
Testing for
Path
Coverage.

Automated
Test Case
Generation,
Effectivene
ss &
Efficiency.

(Pach
auri,
2012)[
36]

Clonal
Selection
Algorithm
(Immune
Algorithm)

Al & NBD,
Approximati
on Level with
normalized
Branch
Distance

Sthamer
Traingle
Classifier
Problem

Hundred
Experiments
(run)

Poor
Generation
& Coverage

Mean
Number of
Generation,
Mean
Percentage
Coverage.

(Saini
and
Tyagi,
2014)[
37]

GA and
CSA

Korel
Distance
Function for
Branch
Predicate

9
Benchmark
Program

Random, GA
& CSA

Elite Test
Data
Generation
Technique,
Generate
Optimal
Test Data

Performanc
e of Test
Data
Generation

(Id,
Moha
mad
and
Deris,
2020)
[35]

Hybrid NSA
& GA

Hamming
Distance

11
Benchmark
Program

Random,
NSA, NSA-
GA

High Path
Coverage
with
minimum
number of
Generation.

Average
Coverage,
Average
test Data,
Average
Generation.

Emerging Trends in Engineering and Management

103

2006

2008

2010

2012

2014

2016

0 10 20 30 40 50 60 70

Ye
ar

 o
f

P
u

b
lic

at
io

n
s

Number of Publications

Year Wise Publications

Publishing Date

8

11

1 1 1 1

11

N
o

. o
f

 E
xp

er
im

en
ts

Series1

13 12

1
3

5
2 1 2 1 1 1 1 1 1 1 1 1 1

N
o

. o
f

Ex
p

er
im

en
ts

Series1

Fig. 3: (a) Publication frequency of test data generation articles

Fig. 3: (b) Type of Experiments used in Test data generation

Fig. 3: (c) Type of Parameters used in Test data generation

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

104

1

16

6

1 1

6

1
5

3
1 1 1

N
o

 o
f

C
o

m
p

ar
is

o
n

s

Series1

Figure 3 (d) No. of comparison conducted by various approaches

7. Discussion & Conclusion

In this paper the survey on Metaheuristics and Artificial Immune algorithms have been done on
generation of software test data, preferably for structural testing because structural testing in
general treated as the favored method for detecting errors and bugs in software code, however, to
produce test data with much greater code coverage capability is still an open question. Particle
Swarm Optimization, Artificial bee Colony, Genetic Algorithm, Ant Colony Optimization algorithm
and Firefly algorithm has been selected for relative study due to their enormous applicability in the
field of automated software test data generation and in different engineering application. Negative
Selection Algorithm (NSA) and Clonal Selection algorithm has been also selected from the class of
artificial immune system, just because of his superiority on Meta–Heuristics algorithms. From the
survey it has been observed that most of the work carried out in automated software test data
generation has been done for metrics like average coverage, success rate, average generation, and
average time. Objective function also plays a crucial role to validate the test data. Different objective
functions such as statement coverage, single path coverage, branch coverage and multipath
coverage has been projected in this study, out of all branch coverage is widely preferred objective
function which also represents significant enhancement in the quality of test data.

In NSA hamming distance is used in place of objective function to validate the test data. Some
benchmark programs such as triangle classification, even odd, largest number, leap year, quadratic
equation and telephone system has been widely applied for experimentation to validate the
efficiency and effectiveness of the technique for generating test data. We notice that adapted ACO
methodology is stronger than ACO, IACO, ABC and GA in coverage capability, convergence speed
and consistency, and is comparable to the PSO-based method in few experimental setups,
according to the survey the experimental results generated in various research papers showed that
NSA is more efficient and more competitive than meta-heuristic algorithms. It has better locating
capability with lesser number of generations. The findings shows that NSA has the potential to
minimize the amount of test data. In this paper we have explored some promising method for
generating test results.

Emerging Trends in Engineering and Management

105

References

[1] M. A. Jamil, M. Arif, N. Sham, A. Abubakar, and A. Ahmad, “Software Testing Techniques : A
Literature Review,” 2016, doi: 10.1109/ICT4M.2016.40.

[2] N. Anwar and S. Kar, “Review Paper on Various Software Testing Techniques & Strategies,”
vol. 19, no. 2, 2019.

[3] S. Anand et al., “The Journal of Systems and Software An orchestrated survey of
methodologies for automated software test case generation Orchestrators and Editors ,” vol.
86, no. 2013, pp. 1978–2001, 2015, doi: 10.1016/j.jss.2013.02.061.

[4] M. Harman and B. F. Jones, “Search-based software engineering,” vol. 43, pp. 833–839,
2001.

[5] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based Software Engineering : A
Comprehensive Analysis and Review of Trends Techniques and Applications,” pp. 1–78,
2009.

[6] M. Harman, P. Mcminn, J. T. De Souza, and S. Yoo, “Search Based Software Engineering :
Techniques , Taxonomy , Tutorial.”

[7] M. Harman and P. Mcminn, “A Multi – Objective Approach To Search – Based Test Data
Generation.”

[8] P. Mcminn, M. Harman, G. Fraser, and G. M. Kapfhammer, “Automated Search for Good
Coverage Criteria : Moving from Code Coverage to Fault Coverage Through Search-Based
Software Engineering,” pp. 17–18, 2016.

[9] C. Mao, B. X. Yu, and J. Chen, “Swarm intelligence-based test data generation for structural
testing,” Proc. - 2012 IEEE/ACIS 11th Int. Conf. Comput. Inf. Sci. ICIS 2012, no. May 2012,
pp. 623–628, 2012, doi: 10.1109/ICIS.2012.103.

[10] M. S. Al-zabidi, “Study of genetic algorithm for automaatic software test data generation,”
vol. 1, no. 2, pp. 65–74, 2013.

[11] D. Karaboga, B. Gorkemli, and N. Karaboga, “A comprehensive survey : Artificial bee
colony (ABC) algorithm and applications A comprehensive survey : artificial bee colony (
ABC),” no. June, 2012, doi: 10.1007/s10462-012-9328-0.

[12] M. Dorigo and T. Stützle, Optimization. .
[13] P. Ranjan, B. Mallikarjun, and X. Yang, “Optimal Test Sequence Generation Using Firefly

Algorithm ”, Swarm and,” Swarm Evol. Comput., vol. 8, no. 1, pp. 44–53, 2014, doi:
10.1016/j.swevo.2012.08.003.

[14] T. Intelligent, C. Systems, and A. Science, “Conceptual Frameworks for,” vol. 1, pp. 315–
338, 2005.

[15] J. Timmis, A. Hone, T. Stibor, and E. Clark, “Theoretical advances in artificial immune
systems,” Theor. Comput. Sci., vol. 403, no. 1, pp. 11–32, 2008, doi:
10.1016/j.tcs.2008.02.011.

[16] D. Dasgupta, “Advances in artificial immune systems,” IEEE Comput. Intell. Mag., vol. 1,
no. 4, pp. 40–43, 2006, doi: 10.1109/CI-M.2006.248056.

[17] X. Zhu, “Software Test Data Generation Automatically Based on Improved Adaptive
Particle Swarm Optimizer,” pp. 1300–1303, 2010, doi: 10.1109/ICCIS.2010.321.

[18] S. Singla, D. Kumar, H. M. Rai, and P. Singla, “A Hybrid PSO Approach to Automate Test
Data Generation for Data Flow Coverage with Dominance Concepts,” vol. 37, pp. 15–26, 2011.

[19] A. Li and Y. Zhang, “Automatic generating all-path test data of a program based on PSO,”
2009 WRI World Congr. Softw. Eng. WCSE 2009, vol. 4, pp. 189–193, 2009, doi:
10.1109/WCSE.2009.98.

[20] S. Tiwari, K. K. Mishra, and A. K. Misra, “Test Case Generation for Modified Code using a
Variant of Particle Swarm Optimization (PSO)Algorithm,” 2013, doi: 10.1109/ITNG.2013.58.

[21] D. A. N. Liu, X. Wang, and J. Wang, “Automatic test case generation based on genetic
algorithm” vol. 48, no. 1, pp. 411–416, 2013.

[22] M. A. Ahmed and I. Hermadi, “GA-based multiple paths test data generator,” vol. 35, pp.
3107–3124, 2008, doi: 10.1016/j.cor.2007.01.012.

[23] K. Li, Z. Zhang, and J. Kou, “Breeding software test data with Genetic-Particle Swarm
Mixed Algorithm,” J. Comput., vol. 5, no. 2, pp. 258–265, 2010, doi: 10.4304/jcp.5.2.258-
265.

[24] G. I. Latiu, O. A. Cret, and L. Vacariu, “Automatic Test Data Generation for Software Path
Testing Using Evolutionary Algorithms,” 2012 Third Int. Conf. Emerg. Intell. Data Web
Technol., pp. 1–8, 2012, doi: 10.1109/EIDWT.2012.25.

[25] S. Sekhara, B. Lam, M. L. H. Prasad, U. K. M, and S. Ch, “Procedia Engineering Automated

Gagan Kumar1, Vinay Chopra2, Dinesh Gupta3

106

Generation of Independent Paths and Test Suite Optimization Using Artificial Bee Colony,”
vol. 00, no. 2011, 2012, doi: 10.1016/j.proeng.2012.01.851.

[26] S. S. Dahiya, J. K. Chhabra, and S. Kumar, “Application of Artificial Bee Colony Algorithm
to Software Testing,” Softw. Eng. Conf. (ASWEC), 2010 21st Aust., pp. 149–154, 2010, doi:
10.1109/ASWEC.2010.30.

[27] B. Suri and P. Kaur, “I nternational journal of research in applied science and engineering
technology (ijraset) Path Based Test Suite Augmentation using Artificial Bee Colony
Algorithm identifying the element,” vol. 2, no. Ix, pp. 156–164, 2014.

[28] D. J. Mala and T. Nadu, “A Non-Pheromone based Intelligent Swarm Optimization
Technique in Software Test Suite Optimization,” pp. 1–5, 2009.

[29] S. Yang, T. Man, and J. Xu, “Improved ant algorithms for software testing cases
generation,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/392309.

[30] C. Mao, L. Xiao, X. Yu, and J. Chen, “Adapting ant colony optimization to generate test data
for software structural testing $,” vol. 20, pp. 2014–2016, 2015.

[31] P. Sharma, “Automated Software Testing Using Metahurestic Technique Based on
Improved Ant Algorithms for Software Testing,” pp. 3505–3510.

[32] P. R. Srivastava, “Automated Software Testing Using Metahurestic Technique Based on An
Ant Colony Optimization,” 2010.

[33] F. Sayyari and S.Emadi, “Automated generation of software testing path based on ant
colony,” no. Ictck, pp. 11–12, 2015.

[34] S. M. Mohi-Aldeen, R. Mohamad, and S. Deris, “Application of Negative Selection
Algorithm (NSA) for test data generation of path testing,” Appl. Soft Comput. J., vol. 49, pp.
1118–1128, 2016, doi: 10.1016/j.asoc.2016.09.044.

[35] S. M. M. Id, R. Mohamad, and S. Deris, “Optimal path test data generation based on hybrid
negative selection algorithm and genetic algorithm,” pp. 1–21, 2020, doi:
10.1371/journal.pone.0242812.

[36] A. Pachauri, “Use of Clonal Selection Algorithm as Software Test Data Generation
Technique,” vol. 2, no. 2, pp. 1–5, 2012.

[37] P. Saini and S. Tyagi, “Test Data Generation for Basis Path Testing Using Genetic
Algorithm and Clonal Selection Algorithm,” vol. 3, no. 6, pp. 2012–2015, 2014.

[38] O. Sahin and B. Akay, “Comparisons of metaheuristic algorithms and fitness functions on
software test data generation,” Appl. Soft Comput., vol. 49, pp. 1202–1214, 2016, doi:
10.1016/j.asoc.2016.09.045.

[39] A. Bertolino, A. Bertolino, and I. A. Faedo, “Software Testing Research : Achievements ,
Challenges , Dreams Software Testing Research : Achievements , Challenges , Dreams,” no.
September, 2007.

[40] H. Tahbildar and B. Kalita, “Automated software test data generation : direction of
research,” vol. 2, no. 1, 2011.

[41] V. Elodie, “White Box Coverage and Control Flow Graphs,” pp. 1–33, 2011.
[42] P. Mcminn, R. Court, and P. Street, “Search-based Software Test Data Generation : A

Survey,” pp. 1–58, 2004.
[43] J. Lin and P. Yeh, “Automatic test data generation for path testing using GAs,” vol. 131, pp.

47–64,
[44] P. Agarwal, “Nature-Inspired Algorithms : State-of-Art , Problems and Prospects,” vol. 100,

no. 14, pp. 14–21, 2014.
[45] R. Malhotra, “Comparison of Search based Techniques for Automated Test Data

Generation,” vol. 95, no. 23, pp. 4–8, 2014.
[46] M. Gupta s, “Effective Test Data Generation using Genetic Algorithms,” no. November

2012, 2014.
[47] B. Zhang and C. Wang, “Automatic Generation of Test Data for Path Testing by Adaptive

Genetic Simulated Annealing Algorithm,” IEEE Int. Conf. Comput. Sci. Autom. Eng., pp. 38–
42, 2011, doi: 10.1109/CSAE.2011.5952418.

[48] C. Mao, X. Yu, J. Chen, and J. Chen, “Generating Test Data for Structural Testing Based on
Ant Colony Optimization,” 2012 12th Int. Conf. Qual. Softw., no. May, pp. 98–101, 2012, doi:
10.1109/QSIC.2012.12.

[49] S. Mustafa, R. Mohamad, “Automated path testing using the negative selection algorithm,”
no. April, 2017, doi: 10.1504/IJCVR.2017.10001815.

[50] S. M. Mohi-aldeen, R. Mohamad, and S. Deris, “Automatic Test Case Generation for
Structural Testing Using Negative Selection Algorithm.”

Emerging Trends in Engineering and Management

107

