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In software development, software testing is an important practice which com-
prises of different activities. It is a time-consuming and cost-oriented process. In
testing, it is very important to select the test data generation process wisely be-
cause testing efficiency is highly dependent on the data used and it may affect the
cost and time. Soft computing algorithms explore test data in search-based soft-
ware testing to optimize the coverage metric, which can be called an optimization
challenge. SomeMeta-Heuristics algorithms (Artificial Bee Colony, Particle Swarm
Optimization, Genetic Algorithm, Firefly Algorithm and Ant Colony Optimization
Algorithms) are selected in this paper for comparative study along with Artificial
Immune Algorithms (Negative Selection Algorithm, Clonal selection, and Hybrid
Negative Selection Algorithm). The Immune algorithm also has a significant im-
pact in engineering applications and in the field of software test data generation.
A survey on automated test data generation has been done on the various criteria
such as type of objective function use, type and number of experiments performed
for specific technique, comparison with other techniques, types of parameters used
and the performance of the algorithm. From this survey it has been observed that
the immune algorithms outperform meta-heuristic algorithms in terms of average
coverage, average generation, cost, and average test data generated. But somehow
the number of comparisons to generate test data in immune algorithms is more
than the Metaheuristic algorithms.
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1. Introduction 
  

Testing is an important activity in the software development life cycle. It is the most time-
consuming process in any software development process. Reliability of software depends on the 
various testing activities such as size of the software and test data[1]. As the size of the software 
grows, testing becomes a more laborious task to perform, of all testing activities test case 
generation includes significant bit of work since it influences the proficiency of the testing process 
before inception of the software[2]. When software becomes more complex, it is very difficult to 
test software to produce accurate test results. Many approaches have been employed and used in 
the state of the art for different programming languages, technologies, and environments to 
produce test cases that make the testing more effective and robust. The most influential techniques 
were classified by Anand et al into five groups such as symbolic execution and program structural 
coverage testing, model-based test case generation, combinational testing, adaptive random testing, 
and search-based testing. The most important technique in the category classified by Anand et 
al.,2015[3]  is search-based research. The main objective of search-based software testing (SBST) is 
to explore successful test data that maximizes the software structure coverage metric.  
 
Random testing [2] is a widely used and low-cost technique that randomly selects test inputs from 
valid range, its performance, however, is at lower side when the inputs are subject to complex 
constraints. SBST overcome the issues associated with random testing and generate quality test 
data even for large and complex problems. In SBST, by formulating the problem as a blended 
problem, some meta-heuristic search techniques have been used for test case generation [2]. 
 
Harman and Jones say that search-based software testing is an evolving field, and meta-heuristics 
are perfect for software engineering to be implemented by reformulating the problems of 
conventional software engineering [4] and a fitness function is defined to evaluate the quality of a 
solution in terms of the coverage metric while formulating the problem. The meta-heuristic does 
not make assumptions about the problem characteristics and provides rational results for problems 
of complexity that cannot be solved by empirical methods because of the dimensionality of the 
problem. Methods of search-based software test data generation that is being reviewed by some 
popular researches in the field of search based testing are (Harman ,  Mansouri, and Zhang) 
[5],Harman et al., [6], McMinn[7]. Meta-heuristics algorithms provide an efficient way to solve the 
problem of test data generation and to locate the search space. Some of the widely applied meta-
heuristics algorithms that are centered on various natural phenomena, are applied by the 
researchers in the field of test data generation such as Particle Swarm Optimization (PSO) 
algorithm[9] , Genetic algorithm [10], Artificial Bee Colony (ABC) [11], Ant Colony optimization 
(ACO)[12] , Firefly algorithm (FA) [13]  are some examples of most popular meta-heuristic 
algorithms. It is mentioned in all these reviews that there are still many areas relevant to search-
based software engineering and many interesting research challenges ahead. 
 

2. Artificial Immune Systems (AIS)  

 
Artificial Immune Systems are computational ideal models that have a place with the 
computational knowledge family and are enlivened by the natural safe framework. Over the past 
decade, researchers have attracted a lot of interest in designing immune based models and 
technique to solve complex software engineering problems. 

 Negative Selection  

 Clonal Selection 
 

Are the three major AIS algorithms commonly used in the field of engineering! 
One of the most important strategies in the Artificial Immune system (AIS) is the Negative 
Selection Algorithm (NSA) a branch of computer intelligence model. The biological action of the 
Natural Immune System (NIS), a compound biological network that uses fast and active techniques 
to protect the body against a particular foreign body called antigens, has inspired AIS [14]. AIS is 
one of the numerous forms of biological systems inspired algorithms, such as evolutionary 
algorithms, swarm intelligence and neural networks, which have attracted a lot of the attention of 
researchers. The goal is to develop immune- based methods to solve complicated computations 
[15].Forrest (1994) implemented NSA, and in fields such as computer security, pattern recognition, 
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anomaly detection, and faults detection have been added. The primary objective of the NSA is to 
differentiate between samples of self and non-self when only self-samples are available. Specifically, 
the objective is to cover non - self space with a specific number of detectors [16].Frank Macfarlane 
Burnet proposed the notion in 1957 to explain the wide variety of antibodies generated during the 
commencement of the immune response. Clonal selection theory is an immunological scientific 
hypothesis that explains how immune system cells (lymphocytes) respond to distinct antigens 
invading the body. It has been widely accepted in the field of various engineering applications.[16] 
 

3. Related work on Test Data Generation 
 

In recent years, some studies on PSO, ABC, GA, ACO and FA for test data/cases generation have 
been presented to literature. 
Xiao-Mei Zhu & Xian-Fang Yang[17] projected a new approach based on PSO, in which inertia 
weight is adjusted according to fitness value. It uses branch Coverage as fitness criteria. It shows 
broad application prospective as compared to immune genetic algorithm and PSO. It outperforms 
IGA and PSO in terms of convergence speed, efficiency, and performance. Sanjay Singhal, 
Dharminder Kumar, H.M.Rai and Priti Singhal [18] projected a hybrid approach by combining GA 
and PSO(GPSCA). It uses data flow coverage by applying dominance concept between two nodes 
and multi-objective coverage criteria. They have conducted the comparison of the proposed 
approach with GA and PSO using seven benchmark programs, the proposed approach 
outperformed GA and PSO for coverage ratio and test data generation. Aiguo Li and Yanli 
Zhang[19] projected a new approach using traditional PSO with new objective function for all path 
coverage criteria. They have done the comparison of the projected approach with single path data 
for triangle classification problem, which shows the proposed approach outperformed the single 
path data for cost and time.  
 
Shailesh Tiwari, K.K.Mishra and A.K Misra [20] projected new approach i.e PSO-TVAC (modified 
time varying acceleration) using code coverage objective criteria for five real world problems. They 
have conducted the comparison of the proposed approach with the exiting PSO approaches. The 
results show that the proposed approach has better coverage capability, control on local and global 
optimum. Chengying Mao , Xinxin Yu and Jifu Chen[9] projected approach based on PSO for test 
data generation i.e TDGen_PSO using branch coverage criteria for five real world programs. They 
have made comparison of proposed approach with TDGen_GA and CL-PS, the results shows that 
the proposed approach outperforms in terms of coverage and test data generation. Dan Liu,Xuejun 
Wang and Jianmin Wang[21] projected an approach IGA based on Genetic Algorithm(GA) for 
automatic test case generation. They have done comparison of IGA with traditional GA for triangle 
classification problem using branch fitness criterion. The improved algorithm adopts real number 
coding and principles of large coverage. The improved GA outperformed traditional GA in terms of 
convergence speed and higher test data generation efficiency. Moataz A. Ahmeda and Irman 
Hermadib[22] projected a GA based test data generator using multi path fitness. The approach can 
synthesize multiple test data to cover multiple target paths. They have performed the comparison of 
the proposed approach with Lin’s & Pei’s work based on GA using seven real world benchmark 
problems. The proposed approach is effective and efficient then the Lin’s & Pei’s work. Kewen Li 
Zilu and Zhang Jisong Kou [23] projected an approach GPSMA by using PSO inside GA. They have 
replaced the mutation operation in GA based on population division. The proposed approach is 
compared with GA and PSO for triangle classification problem. The proposed approach avoids 
premature generation and improved convergence speed. Gen.iana and Ioana [24] is projected a 
new approach based on three evolutionary approaches GA, PSO and SA. They compared proposed 
approach with GA, SA and PSO using ten benchmark problems. 
 
 In the proposed approach they have evaluated the distance between the actual paths. The proposed 
approach outperformed the GA, PSO and SA in terms of quality data generation and high 
convergence. In the proposed approach they have used annealing mechanism into GA along with 
similarity-based fitness function. They compare the proposed approach with GA and Random 
testing for triangle classification Problem. Soma Sekhara ,Babu Lam & M.L.Hari [25] projected an 
approach by combining the functionalities of scouts, employed and onlooker bees in ABC 
algorithm. They compared the approach with ABC, GA and ACO using benchmark triangle 
classification program by using independent test path coverage criteria. The proposed approach is a  
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no pheromone-based approach which does not required to update the pheromone level which 
improve the time complexity and the number of tests required are also at low level. Surinder Singh 
Dahiya et al.[26] Proposed a static based symbolic execution approach using ABC algorithm with 
branch distance as objective function. They have compared the approach with average test cases 
generated path (ATCPP) and average percentage coverage (APC) metrics using ten real world 
benchmark programs. The said approach does not perform well for in the elevated value of ATCPP. 
Bharti Suri & Prabhneet kaur [27] proposed a regression augmentation testing approach based on 
ABC algorithm with branch distance as objective function. They have compared the functionality of 
the existing algorithm using eight real world benchmark programs for test suites. The proposed 
approach yields 100% path coverage in regression augmentation testing.  
 
D.Jeya Mala,M.Kamalapriya [28] have proposed ABC based approach by applying heuristic in each 
test case with path coverage as objective function. They have compared the functionality of the 
proposed approach with ACO using six benchmark programs. The proposed approach generates 
optimal results and converges with a smaller number of test runs. Shunkun Yang, Tianlong Man, 
and Jiaqi Xu [29] proposed an approach based on ant colony optimization in which they have 
improved local pheromone strategy, pheromone volatilization co-efficient and global path 
pheromone with statement coverage, branch coverage and condition coverage as fitness value. They 
have compared the proposed approach with random algorithm and genetic algorithm suing 
benchmark program triangle classification. The proposed approach can effectively improve the 
search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. 
Chengying Mao, Lichuan  Xiao, Xinxin Yu & Jinfu Chen [30] proposed an approach in which they 
reformed ACO into discrete version by redefining local transfer; global transfer and pheromone 
update rule with customize branch fitness function. They have compared the proposed approach 
with GA, SA and PSO using eight benchmark programs. The proposed approach outperforms the 
GA and SA and comparable to PSO. Pooja Sharma [31] has proposed an approach for automated 
software testing using meta heuristic technique based on improved ant algorithm in which she used 
statement, branch and modified decision/coverage as an objective function. The comparison of the 
proposed approach has been done with the existing RND, GA and different variants of ant 
algorithms for classic triangle classification and collision avoidance system. The proposed approach 
has better coverage and minimal generation as compared to RND, GA and different variants of ant 
algorithms. Praveen Ranjan Srivastava and KM Baby [32] proposed a meta-heuristic technique 
based on ACO for state transition testing. They have done experimentation with the proposed 
approach by selecting the enrolment statement machine and transition system state as 
experiments; they compared the proposed approach with GA and Software Transition testing. The 
proposed approach has better coverage than GA. 
 
 Faeghe Sayyari and Sima Emadi [33] has proposed an ACO and model based testing approach. 
They have used Markov model for the re-formation of ACO. The comparison of proposed approach 
has been done with ACO data flow testing and ACO Markov Chain for single telephone experiment. 
The Proposed approach generates quality data as compared to ACO data flow testing and ACO 
Markov Chain. Shayma Mustafa , MohiAldeen Radziah Mohamad and Safaai Deris [34] have 
proposed a new approach based on artificial immune system in which they have use the application 
of negative selection algorithm . They have compared the proposed approach with random testing, 
genetic algorithm and ant colony optimization using eleven benchmark programs. The proposed 
approach outperforms other methods in reducing the number of test data that covers all program 
paths by calculating the hamming distance. Shayma Mustafa et al.[35] projected a new hybrid 
approach based on NSA and GA for automated test data generation, the experimentation of the 
projected approach has been done on 11 real world programs, the projected approach is also 
compared with random testing approach and negative selection algorithm. The results show that 
the projected approach has high path coverage with minimum number of generations. Ankit 
Pachauri and Gursaran [36] has projected test data generation approach based on Clonal selection 
algorithm. They have used AI and NBD Approximation level with normalized branch distance as 
objective function to validate the test data. Sthamer triangle classifier problem has been used for 
experimentation with approximated experiment runs. The results show that the projected approach 
has poor generation and coverage ratio. Poonam Saini and Sanjay Tyagi[37] has also projected an 
approach based on Clonal Selection algorithm . They have used Korel Distance function for branch 
predicate as objective function to validate the test data. The projected approach is compared with  
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random testing and genetic algorithm by considering nine real world programs for 
experimentation. The projected approach generates optimal test data and has an elite test data 
generation technique. 
 
The main objective of this paper is to explore the search capabilities of Meta–heuristic algorithms 
ACO, GA, PSO, ABC, FA and Artificial Immune algorithm NSA on benchmark problems in software 
test data generation, including triangle classification, quadratic equation, even odd, largest number, 
telephone system etc. Meta-heuristic algorithms such as ACO, GA, PSO, ABC, FA has excellent 
search capabilities, but all these algorithms have somehow lag in complete coverage or may be 
sometimes struck in local optima. The Artificial Immune algorithms on the other side present 
significant improvement in the search capability Negative Selective algorithm, Clonal Selection and 
Hybrid NSA-GA are latest algorithms that explore the capability of test data generation in the 
significant manner. An immune algorithm has significant impact on the quality and coverage 
capabilities of test data generation. Besides, designing an objective function is another important 
subject that should be determined in the experiments [38]. Designing a good objective function 
allows the algorithm to monitor the optimum more accurately and quickly in the search space. 
The rest of the paper is structured as follows. Software test data generation is formulated in the 
second section and then a section is devoted to the generation of search- based test data. A brief 
overview of Metaheuristic is given in the next section as pseudo codes. Survey of the Metaheuristics 
algorithms and AIS algorithms has been done on SBST and are recorded in section 4. Survey has 
been done is section 5 and Finally, the discussion and conclusion are dedicated to Section 6. 
 
 

4. Search Based test data generation 
 
Software testing is an essential task in software development to satisfy the requirements 
specification of the software under process. Testing takes the bigger portion of the development 
process. A well-designed test plan must be desired to align all the testing activities at different 
milestones. 
 
In software testing main goal is to decide the issues given below [39] 

 Maximum coverage should be achieved with minimal test cases. 

 Design the well modeled structure of the developing system. 

 Well planned testing activities to yield optimal results. 
 
Opting for test data that yields maximum coverage can be attain either in manual or in automated 
way. Selection of the testing process depends upon the size of the software, to validate large size 
program automated testing is more preferred as compared to manual testing, as manual testing is a 
time consuming and laborious activity, for this reason the popularity for the automated testing has 
raised and being adopted by many researchers. Many new techniques have been proposed for 
automated test data generation, which have shown the significant impact on the quality of the 
product being developed. In, literature different test data generation architectures have been used 
[40]. 
 
In most of the studies, program code is converted into a control flow graph (CFG), which represents 
the graphical flow of the sequence of statements related to source code of the relevant program[41]. 

 
A CFG is defined as a directed graph 
           G = (N, E, s, e) 
           N – Set of nodes 
           E - No of edges 
           s- Starting node 
           e – Exit node 
CFG must have a unique Entry s and Exit node e. That the program is going to start to execute and 
terminate the control flow graph for minmax problem is presented in fig. 1. 
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Fig. 1: Control Flow Graph for Minmax Problem 
 
 
Selecting an appropriate input that passes through the different predicates (Statement, Branch and 
Path) in CFG can be considered as an optimization problem, which aspires to maximize the 
coverage of the source code. Therefore, Search based software testing techniques  based on 
optimization algorithms and refined  by a fitness function for improved quality has received 
attention of the researchers in past years [42] 
 
Harman [5] has proposed a generic search based test data generation technique. The flow of the 
working of test data generation is represented in the form of sequence diagram in Fig 2.  
 

 
Fig 2 Sequence diagram for Test Data Generation 
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5. Meta–heuristic & Artificial Immune Algorithms for Test 
Data Generation 
 
Researchers have applied the functionality of various meta-heuristic algorithms based on different 
natural phenomena in the field of test data generation. Algorithms who show significant impact in 
test data generation are Particle Swarm Optimization (PSO) algorithm, Ant Colony optimization, 
Artificial Bee Colony (ABC), Genetic algorithm (GA) and Firefly algorithm (FA). 

 
The Immune algorithms are also gaining popularity in various engineering applications, even in the 
field of test data generation. The outcome of immune algorithms is having upped edge than Meta – 
heuristic algorithms. Negative Selection algorithm (NSA) & Clonel Selection algorithm are widely 
applied in the field of software testing. The Pseudo Codes of meta – heuristic and artificial 
algorithms are presented as follows:  
 
5.1  PSO algorithm : introduced by Eberhart and Kennedy in 1995[9], is a swarm-based meta-
heuristic that models the social behavior of bird flocking or fish schooling. The Pseudo Code of PSO 
is as follows: 
 

 Begin 
 Initialize Particles randomly 
 Repeat until PBest != target_reached 
 Evaluate PBest for each particle 
 If current position > PBest than 
 Update: PBest 
 Else 
 Assign: gBest = PBest 
 endif 
 Compute velocity 
 Update particle position 
 If target_reached  
 End 
 Else 
 goto step 4  

 
5.2 Artificial Bee Colony (ABC):  algorithm developed in 2005 by Karaboga [11] mimics the 
for aging behavior of honey bees and has been applied to many problems encountered in different 
research areas . The Pseudo Code of ABC is as follows: 
 

1. Begin 
2. Initialize population randomly  
3. Repeat steps 4 to 10 until convergence! = expected 
4. Employed bee phase 
5. Onlooker bee phase 
6. Scout bee phase 
7. If convergence== expected 
8. End 
9. Else 
10. Goto step 

 
5.3  The ant colony optimization algorithm (ACO): introduced by Marco Dorigo[12], in the 
year 1992 and it is a paradigm for designing Meta heuristic algorithms for optimization problems 
and is inspired by the foraging behavior of ant colonies. Ant Colony Optimization targets discrete 
optimization problems and can be extended to continuous optimization problems which is useful to 
find approximate solutions[12]. The Pseudo code of ACO as follows: 
 

1. Begin 
2. Initialize parameters  
3. Repeat while iterations < n  
4. Generate random population 
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5. Calculate fitness 
6. Update pheromone 
7. Apply transition 
8. create new_path 
9. If iteration=n 
10. End 
11. Else 
12. Goto step 4 

 
5.4 Genetic Algorithms (GA) is proposed by Professor Holland in Michigan University of the 
United States in 1975, which was inspired by the biological evolution. GA is based on the principle 
of natural selection and universal search optimization algorithm of the genetic 
mechanisms[10][43]. The Pseudo Code of GA is as follows:   
    

1. Begin  
2. Initialize Population 
3. Repeat while Population! = quiet 
4. Select Population 
5. If new_population=quiet 
6. End 
7. Else 
8. Cross overs 
9. Mutations 

10. Goto step 4 
 
 

  5.5 Firefly Algorithm:  FA was developed by Xin-She Yang, inspired by the flashing behavior of 
fireflies. Mechanisms of firefly communication via bioluminescent flashes and their 
synchronization have been imitated effectively in various techniques of wireless networks design , 
dynamic market pricing , mobile robotics , economic dispatch problem , and structural 
optimization problems.[13] . The Pseudo Code of Firely is as follows: 
 

1. Begin 
2. Repeat steps 3 to 9 until iteration 1=max_generation 
3. Initialize Firefly 
4. Evaluate objective function 
5. Generate rank of Firefly 
6. Compute best_function 
7. Compare best_function= firefly_movement 
8. If iteration=max_generation 
9. Display result 
10. Else 
11. Goto step 3 
12. End                                 

 
5.6  Negative Selection Algorithm: Negative Selection Algorithm (NSA)’is one of the most 
important methods in an Artificial Immune System’ (AIS)[14], It was introduced by Forrest (1994) 
which is a branch of computational intelligence models. AIS was inspired by the biological behavior 
of Natural Immune System’(NIS), which is a compound biological network using fast and active 
techniques to defend the body versus a specified foreign body called antigens. AIS are one of the 
different kinds of algorithms inspired by biologic systems. Its objective is to develop immune-based 
techniques for solving complicated computation[14]. The Pseudo Code of NSA is as follows: 
 

Generation_Stage 
1. Begin 
2. Generate Random_Detectors 
3. If Detectors=Self 
4. Goto step 2 
5. Else 
6. Accept as New_Detector 
7. If Detectors=Enough 
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8. Goto Detection_Stage 
9. Else 
10. Goto step 2 
 
Detection_Stage 
1. Begin 
2. Input New_Sample 
3. If (New_Sample=Detector) 
4. Self 
5. Else 
6. Non-self 
7. End 

          
5.7  Clonal Selection Algorithm:  Clonal Selection algorithm belongs to the field of artificial 
immune system. The clonal selection algorithm is inspired by the clonal selection theory of 
acquired immunity.[16] The clonal selection theory credited to Burnet was proposed to account for 
the behaviour and capabilities of antibodies in the acquired immune system.[44] The theory 
suggests that starting with the initial repertoire of general immune cells, the system is able to 
change itself the CSA was designs as a general machine learning approach and has been applied to 
pattern recognition, functional optimization , combinational optimization and test data generation 
domain[36]. The Pseudo code of Clonal algorithm is as follows: 

 
1. Begin 
2. Initialize Antibodies Randomly 
3. Repeat until antibodies > max_antibodies 
4. Evaluation_Chamber = Antibodies 
5. Compute Affinity_extent 
6. If Affinity_extent > threshold 
7. Print mature antibody group 
8. Else 
9. Arrange antobody based on affinity 
10. If antibodies > max_antibodies 
11. Goto step 6 
12. Else 
13. Print first antibody 
14. Goto step 3 

 
The main objective of this paper is to explore the search capabilities of Meta–heuristic algorithms 
ACO, GA, PSO, ABC, FA and Artificial Immune algorithm NSA on benchmark problems in software 
test data generation, including triangle classification, quadratic equation, even odd, largest number, 
telephone system etc. Meta-heuristic algorithms such as ACO, GA, PSO, ABC, FA has excellent 
search capabilities, but all these algorithms have somehow lag in complete coverage. The Artificial 
Immune algorithm NSA is new approach in generation of test data. An immune algorithm has 
significant impact on the quality and coverage capabilities of test data generation. Besides, 
designing an objective function is another important subject that should be determined in the 
experiments [4]. Designing a good objective function allows the algorithm to monitor the optimum 
more accurately and quickly in the search space 
. 

6. Software Test Data Generation: Survey 
 

Table 1 Comparative Study of different test data generation techniques 
 

Auth
or 

Techniqu
e Adapted 

Fitness/Obj
ective 
function 
used 

No. of 
Experime
nts 

Compariso
n with 
other 
techniques 

Findings 

Performa
nce 
Measure 
Paramete
r’s 
adopted 

(Sekha
ra et 

ABC Based 
by 

Independent 
Test Path 

Triangle 
Classificati

ABC, GA & 
ACO 

Less No. of 
Test 

Path 
Coverage, 

Emerging Trends in Engineering and Management

99



al., 
2012) 
[25] 

combining 
scouts, 
employed & 
onlooker 
bees 

Coverage 
Criteria 

on Required, 
Low Time 
Complexity 
for Test 
data 
Generation, 
Faster & 
efficient 

Path 
Sequence 
Compariso
n. 

 
(Dahi
ya, 
Chhab
ra and 
Kuma
r, 
2010) 
[26] 

Static Based 
Symbolic 
Execution 

Branch 
Distance 

10 Real 
World’s 
Problem 

Average Test 
cases 
Generated 
Path 
(ATCPP) and 
Average 
Percentage 
Coverage 
(APC) 
metrics 

Does not 
Perform 
Well for 
High Value 
of ATCPP 

Average 
Test Cases 
Generated 
Path 
(ATCPP) & 
Average 
Percentage 
Coverage 
(APC) 
Metrics 

(Malh
otra, 
2014) 
[45] 

Compariso
n 

----------- 
9 real world 
Programs 

GA & ACO 

Yields 
Better 
Results for 
Large and 
Complex 
Problems 

No. of 
Paths 
Covered, 
Number of 
Iterations, 
Number of 
Test Cases. 
Time taken 
for number 
of 
Generation 

(Suri 
and 
Kaur, 
2014)[
27] 

Regression 
Augmentati
on testing 

Branch 
Coverage 

8 Test Suites 
Yields 100 
% coverage 

Path 
Coverage 

(Mala 
and 
Nadu, 
2009)
[28] 

ABC based 
approach 
with 
heuristic in 
each test 
case. 

Path 
Coverage 

6 ACO 

Generate 
Optimal 
Results and 
Converges 
with a 
smaller 
Number of 
Test Runs. 

Time 
Complexity, 
Path 
Coverage 

(Zhu, 
2010)[
17] 

Improved 
PSO 

Branch 
Coverage 
Fitness 

Triangle 
Classificati
on 

Immune 
Genetic 
Algorithm 
and PSO 

Outperform 
IGA & PSO 
in terms of 
Convergenc
e Speed, 
Efficiency 
& 
Performanc
e 

Average 
Iteration 
Time, 
Convergenc
e Rate. 

(Singl
a et 
al., 
2011) 
[18] 

Hybrid GA 
& 
PSO(GPSC
A) 

Multi -
Objective 

 
7 

GA & PSO 

High 
Coverage 
Ratio, 
Less 
Generation. 
 

Coverage 
Ratio 
No. of Test 
Cases. 
No. of 
Generation 

 
(Li 
and 

Traditional 
PSO 

New All Path 
Objective 

Triangle 
Classificati

Single Path 
Data. 

Cost of 
Time is 

Cost and 
time of test 
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Zhang
, 
2009)
[19] 

With new 
objective 
function 

Function on & Binary 
Search 

Half as 
compared 
to Single 
Path 

data 
generation 

(Tiwa
ri, 
Mishr
a and 
Misra, 
2013)[
20] 

PSO-TVAC 
(modified 
Time 
Varying 
Acceleratio
n. 

Code 
Coverage. 

5 
Benchmark 
Programs 

PSO Variants 

Better 
Performanc
e and Great 
Code 
Coverage 
Capability, 
Control on 
Local and 
Global 
Optimum 

Code 
Coverage 
and test 
case 
Generation. 

(Mao, 
Yu 
and 
Chen, 
2012) 
[9] 
 

PSO Based 
Test Data 
Generation 
(TDGen_PS
O) 

Branch 
Coverage 

5 Real 
World 
Programs 

TDGen_GA, 
CL-PS 

Outperform
s 
TDGen_GA 
and CA-
PSO in 
terms of 
Coverage & 
Generation
s 

Average 
Coverage, 
Successful 
Rate, 
Average 
Generation
s and 
Average 
Time 

(Liu, 
Wang 
and 
Wang, 
2013)[
21] 
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Figures 3( a), 3 (b), 3 (c) , 3( d) presents the graphical survey of Automated test data generation. 
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Fig. 3: (a) Publication frequency of test data generation articles 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: (b) Type of Experiments used in Test data generation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3:  (c) Type of Parameters used in Test data generation 
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Figure 3 (d) No. of comparison conducted by various approaches 

 

7. Discussion & Conclusion 
 
In this paper the survey on Metaheuristics and Artificial Immune algorithms have been done on 
generation of software test data, preferably for structural testing because structural testing in 
general treated as the favored method for detecting errors and bugs in software code, however, to 
produce test data with much greater code coverage capability is still an open question. Particle 
Swarm Optimization, Artificial bee Colony, Genetic Algorithm, Ant Colony Optimization algorithm 
and Firefly algorithm has been selected for relative study due to their enormous applicability in the 
field of automated software test data generation and in different engineering application. Negative 
Selection Algorithm (NSA) and Clonal Selection algorithm has been also selected from the class of 
artificial immune system, just because of his superiority on Meta–Heuristics algorithms. From the 
survey it has been observed that most of the work carried out in automated software test data 
generation has been done for metrics like average coverage, success rate, average generation, and 
average time. Objective function also plays a crucial role to validate the test data. Different objective 
functions such as statement coverage, single path coverage, branch coverage and multipath 
coverage has been projected in this study, out of all branch coverage is widely preferred objective 
function which also represents significant enhancement in the quality of test data.  
 
In NSA hamming distance is used in place of objective function to validate the test data. Some 
benchmark programs such as triangle classification, even odd, largest number, leap year, quadratic 
equation and telephone system has been widely applied for experimentation to validate the 
efficiency and effectiveness of the technique for generating test data. We notice that adapted ACO 
methodology is stronger than ACO, IACO, ABC and GA in coverage capability, convergence speed 
and consistency, and is comparable to the PSO-based method in few experimental setups, 
according to the survey the experimental results generated in various research papers showed that 
NSA is more efficient and more competitive than meta-heuristic algorithms. It has better locating 
capability with lesser number of generations. The findings shows that NSA has the potential to 
minimize the amount of test data. In this paper we have explored some promising method for 
generating test results.  
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