Automated Inspection System for Assembled Printed Circuit Board Using Machine Vision

Harish O. Goupale, Neetu N. Gyanchandani, Pranay A. Chauhan, Sneha C. Kumbhare, Twinkle B. Bhaisare

Department of Electronics and Telecommunication, J D College Of Engineering and Management, Nagpur

Corresponding author: Harish O. Goupale, Email: hgoupale9119@gmail.com

The perfect Printed Circuit Board (PCB) plays a very important role in every electronic device as well as in automation systems. So, it is very important to find defects in the PCB before installing it to any system or any device. However, PCB Manufacturers use various inspection systems in the process of manufacturing PCBs for detecting various types of defects in the PCB. In this article, we present the Automated assembled PCB Inspection System. This system finds defects such as missing components and improper position of its components by using the Pattern matching Technique where a good known score of template image is matched with the score of the test image. This system gives results at each inspection within 10 Seconds and the result given by this system are passed or fail in the form of an array sheet. This automated inspection system is created by using NI Vision Builder AI and NI LabVIEW technology. Ni Vision Builder AI has been used to create the algorithm. And NI LabVIEW has been used to create the application.

Keywords: NI LabVIEW2020, NI Vision Builder AI 2020, Image Processing, Pattern Matching Technique.

1. Introduction

In the modern world, infrastructures and industries turn towards automation where various types of PCBs play a very important role. The working of every electronic device and automation system depends on the functionality of PCBs. Due to misalignment and orientation during the manufacturing of PCB, various types of defects can occur. A very small defect in the PCB may cause the entire system failure, so before installing to any system, it is very important to check the functionality and working of PCBs in the last stage of PCB manufacturing units in the industry. Usually, many industries used various methods like manual inspection, electrical performance testing, Automated inspection systems, and Automated Visual Inspection Systems to find the various types of defects in the PCBs. PCB defects can be sorted into two parts: Functional defect and Cosmetic defect [15]. Opens, shorts, defective components, are the functional type of defects. And usually, functional defects can be tested by connectivity tests which affect the performance of the system [4]. Missing components, improper position of components is the cosmetic type of defects. And cosmetic defects affect the appearance of the PCB [15]. In general PCB algorithms can be classified into three types: referential approach, nonreferential approaches, and hybrid approaches [15]. The referential approach involves the comparison between pixels in the test image and in a template image or reference image. The non-referential approach simply works on geometric shapes and verify the design rules. The hybrid approach is the combination of a referential approach and a non-referential approach. Most of the PCB manufacturing industries use machine vision technology, where a combination of hardware and software works together with a simple camera to acquire the image and by using pattern matching technique. Pattern matching in computer vision technology is the set of computational techniques that enable the localization of template patterns in a sample image. In the template matching algorithm, we have to pass the already reference image/template image to the algorithm, after that when the source image comes in, the template matching works by comparing each pixel value of the source image with the template one at a time. And then we get the output of an array of similarity values after comparing the template image. In this paper, the proposed automated inspection system is based on the referential approach. It is nothing but the pattern matching technique where the perfect assembled board is used as the template image, and inspecting images are considered as a test image. The proposed system finds defects such as missing components and improper position of components.

2. Literature Survey

Mukesh Kumar and colleagues [1] use an image enhancement algorithm to sharpen the edges of tracks in PCB, filter out the noise effectively with the help of National Instrument Vision assistant software. The average time ready to perform the proposed algorithm is 10 ms or 99.43 parts inspected per second

T. J. Mateo Sanguino et al. [2] The visual inspection system is used for automatic detection and classification for finding errors. The subtraction method is used for higher performance of defect detection and light intensity to get a more accurate classification. Through the use of statistical techniques, the system allows classifying a total of twelve types of detects and the algorithms are analytically compared and examined the performance.

Ziyin Li and colleagues [3] AOI technology are presented to detect the defects of PCB. The image enhancement, image denoising, pictures segmentation algorithm are used in this process. It detects wire gaps, voids, scratch defects as well short circuits, open circuit faults, and other types of defects. The system doesn't require any touch. The highest resolution of the design is 15μ m and the detection success rate is over 95%.

Manasa H R and Anitha D B [4] Automated inspection system is used for improving quality of Printed

Circuit Board (PCB) production and rejection ratio. This system has been implemented using the template Matching method and it used a referential approach to inspect the assembled PCB, find missing components, verify the physical dimensions of the components, and generate a check report. This system is made for a particular PCB, so there is separate code that needs to be written for different PCBs.

Anitha D B, Mahesh Rao [5] The proposed work gives an automated approach for identifying defects related to the SMT components found in the assembled PCB. There are three different techniques 1. Contour Analysis 2. Optical Character Recognition 3, Pixel Subtraction. This technique is used for detecting the defects such as shifted components, placement of wrongly valued components, and missing components in the LabVIEW platform. Using this technique number of defects can be decreased and it takes very little time to identify other defects.

Hendawan Soebhakti and Farkhad Ihsan Hariadi [8] have developed automated optical inspection using surface mount technology to find missing components and defects during the PCB assembly process. They have found the solution developing AOI (automatic optical inspection) by employing neural networks and extracting histogram values from PCB images. When the system is inspecting a small size of components then it displays the result of an accuracy rate of 93%. By extracting histogram values from PCB images, the neural network can classify components under inspection as exit or missing. It classifies components available or not by using AOI and neural network technology.

Tejas Khare, Vaibhav Bahel, and Anuradha C. Phadke [9] The author name this proposed system as PCB Fire. The paper aims to solve the problem of missing components in PCB. They have used different techniques like Object detection, Image Subtraction Pixel manipulation algorithms, and neural

networks for detection and classification. A novel algorithm using image subtraction and pixel manipulation for detecting and classifying the missing components was proposed. In this system, the classification of the components is achieved by using the YOLO (You Only Look Once) algorithm. YOLO is a fully convolutional Neural network (CNN). They provide input image text size that is fed to be classified or detected by the network. This solution reduced the loss of capital and time incurred while identifying the fault. The model gave an accuracy of 75.48%.

No.	System Name	Technique used	Algorithm used	Software's used
[1]	Automated Optical Inspection System.	Patterns Matching Technique.	AOI system can quickly capture the focused pictures of inspected parts as well as record and compare their patterns with the perfect part or product.	NI Vision Assistant, Open CV library in LabVIEW Programming.
[2]	Automated Surface mount PCB inspection system.	Normalized Cross Correlation template matching technique.	The method developed is based on Template Matching and Genetic Algorithm search where a generalized grey model template is used for multiple target recognition.	Canny Edge Detection Algorithm Software.

Table 1. Comparison Table

[3]	Automated Optical Inspection System.	Neural Network Technique and Optical Character Recognition Method.	A threshold value is applied on acquired image to produce a binary image. Solder size can be calculated based on the number of white pixels in each of ROI.	LabVIEW and IMAQ function.
[4]	Automated Inspection System.	Template Matching Technique.	The perfect board is used as the reference board, inspecting PCB image is the test image. Test PCB is checked against the reference board using template matching technique.	NI Vision Development Module and LabVIEW Programming.
[5]	Automated Testing System	Bitwise XOR Operation	The captured RGB image is converted to grey scale. Grey scale image is then converted to binary form using Canny Edge Detection algorithm.	Canny Edge Detection Software.
[6]	Automated Optical Inspection	Contour Analysis, and Optical Character Recognition Technique, Pixel Subtraction Method.	Reference imageis compared with acquired image is being tried.	LabVIEW Programming, NI OCR Training Interface.
[8]	Automated Optical Inspection	Pixel theory and object detection technique, Image Subtraction Method. Convolutional neural network technique.	Thedetectionandclassificationofcomponent are achievedby using the (YOLO) YouOnlyLookOncealgorithm.(YOLO)isafullyConvolutionalNeuralNetwork (CNN). It is aneural network used fordetection & classificationWhichhasfreeopenaccess.	PCB DSLR Dataset [online]

3. Identification of Tools

In the proposed Automated inspection System to construct the hardware structure, the 3MP Webcam has been used as shown in Figure 1. And we have created a Black box to set the camera in a static position as shown in Figure 2. Also, we have created a static position for inspection of PCBs as shown in Figure 3. and we have used two software to propose the whole Automated Inspection System which is NI LabVIEW and NI Vision Builder AI. NI LabVIEW version2020 has been used to build the application shown in Figure 4. and NI Vision builder AI 2020 has been used to create the algorithm shown in Figure 5.

Fig 1(a). Blazon Webcam , HD, 3MP Image Resolution, Frame Rate30fps

Fig 1(b) Wooden Box to set the camera

Fig 2. Static Position of PCB

🖻 LabVIEW	1°	Q Search						
Create Project	Open Existing	< 6/8 > >>						
Recent Project Templates	All Recent Files × ^	Get Support						
Blank VI Blank Project	CAN Logging Ivproj Temperature Monitoring Ivproj Simple UDP Ivproj	Find support resources including documentation, examples, and downloads. Learn about support services or open a service request with an NI engineer. Read more						
	# employe info 2.lvproj							
	DisplayController.lvproj Vision RIO Output Queue - Pulse Rel Vision RIO Output Queue - Line State							
~	Final Project.vi							

Fig 3. NI LabVIEW

Harish O. Goupale, Neetu N. Gyanchandani, Pranay A. Chauhan, Sneha C. Kumbhare, Twinkle B. Bhaisare

VISION BUI for Automated Insp	Ider 20)20		Getting Started	
My Computer		Ready	<u>د</u> م ،	Help Me Acquire My First Image	
Simulated NI 1781 Smart Camera	-	Ready	⁺ø *∎ ~	What's New in Vision Builder AI Wision Builder AI Resources	
Why is my target not listed?			0	Vision Builder AI Online Help	
Configure Inspection				NI Vision Concepts Help	
Kew Inspection Kew Inspection Kew Inspection from Template CitUsers/by/final.vbai CitUsers/by/D2 Objects111111 CitUsers/by/D2 Objects111111 CitUsers/by/D2 CitUsers/by/D2	/bai I 2020\Exampi age from Came 94 GigE Vision d	es\vision3.vbai ra Link camera.vbai or USB Camera Exam	le.\	Community and Online Support Tedmical Support Locusion Forums Request Support	

Fig 4. NI Vision Builder AI

4. Implementation of the Algorithm

The proposed Automated Inspection System for Assembled Printed Circuit Board has been implemented using pattern matching technique and to create the algorithm the software tool used is NI Vision Builder AI shown in Figure 6. The template images are matched with the test images. The perfect assembled PCB is considered as the template image shown in Figure 7. Every manufacturing PCB is considered as the test image shown in Figure 8. If the match score of the test image is less than the template image then the test image is considered as a fail. Figure 9 Flowchart of Proposed Automated Inspection System Shows the overall flow of the inspection in the following 5 steps.

Fig 5. Image of Template PCB

Fig 6.Image of Test PCB

Artificial Intelligence and Communication Technologies

Fig 7. Algorithm of Automated PCB inspection system

Fig 8 . Flowchart of Proposed Automated Inspection System

Step 1: This is the Image Acquisition step. This is the first step of the algorithm. In this step, the proposed system acquired the image of the AVR Trainer Board through a USB cable from a 3MP Webcam Camera.

Step 2: This is the Image Enhancement step. In this step there is a new window open called as NI Vision Assistant window where we have performed image enhancement on AVR Trainer Board shown in Fig.10. it improves the quality and information content of original data before processing. It includes Brightness enhancement where it alters the brightness which refers to the overall lightness or darkness of the image. Also, it includes contrast enhancement which is the difference in brightness between objects or regions. and gamma enhancement that preserves the mean brightness of an image that produces natural-looking images by the choice of an optimal gamma value. And this is the first step of the image enhancement step. now the second step of the image enhancement step is Color Plane Extraction. in this step we can extract the three-color planes such as Red, Green, Blue (RGB), Hue, Saturation, Luminance (HSL), Value, (HSV) from an image. From all the extraction operations, we have used the green plane extraction which extracts the green plane from an RGB image. And the third step of image enhancement step is Gray Morphology. In this step we can modify the shape of objects in an image in various morphological operations like Erode, Close, Open, Proper closed, Proper open, and Auto median. From all these morphological operations, we have set the open gray morphology operation on AVR Trainer Board.

Fig 9. NI Vision Assistant for Image Enhancement

Step 3: This is the pattern matching inspection step. This step is the main step of the algorithm. In this inspection technique, we create a template image of the object for the inspection. This is also called as template matching technique. This template matching technique is a high-level machine vision technique of NI Vision Builder AI that identifies the parts of an image that match a predefined template. This technique is flexible and relatively straightforward to use which makes them the most

popular method of object localization. Specifically, in this step we have created a template that represents the object for which we are searching, after that when we run the algorithm then the inspection step searches for the pattern in each acquired image. Then in every inspection, it calculates the score of every match. the score of every match depends on the following number of matches. X number of pixel (X(pixel)), Y number of pixel (Y(pixel)), X Calibrated position X(M), Y Calibrated position Y(M), Angle, Angle Calibration and Score. The score relates how closely the instances of the template match the pattern. We have set the minimum score limit of every template image up to 800. If the new test image achieved less than 800 scores in the pattern matching step then the test image is considered a fail. We have implemented this inspection step / Technique on the AVR Trainer Board which is a complete starter kit for the AVR Flash Microcontroller. We have implemented this technique to the components of the AVR Trainer Board such as given in the following list. ATMEGA 16 Microcontroller, DC Jack, Trimming Potentiometer, Power ON/OFF Switch, Reset Switch, Onboard 8 LED array, Onboard 5V Buzzer, Onboard 12MHZ Crystal Oscillator, 7805 Voltage Regulator, Transistor, W04 Bridge Rectifier Diode, 6Resister of 220 Ohms, and 2 electrolytic capacitors. The template image of the ATMEGA 16 Microcontroller is shown in Figure 10. The template image of DC Jack is shown in Figure 11.

Fig 10. Template image of ATMEGA 16 Microcontroller

Fig 11. Template Image of DC Jack

Step 4: This is the Set Inspection Status step. In this step, we can set up the inspection status of the whole algorithm. We can select the inspection status from the already given status for our algorithm. we have selected the status such as, set to FAIL if any previous step fails or if the current value of Inspection Status is FAIL. because our whole algorithm is totally based on the status of previous steps.

Steps 5: This is the data logging step. In this step, we can enter the overall inspection results into a file on the local hard drive or to a remote FTP server. The following data logging control is located on the data logging step, like Measurements Logged Tab and Destination Tab. In the measurements logged Tab, we have set the "Always Logged Measurements" Which means, all the selected measurements of every inspection step are logged when the step executes. And in the Destination Tab, we have set the "Logged to Local Drive" Which means the measurement results are saved to a 'local storage device'. And the 'local storage device' is one of the Comma Separated Value (CSV) File Type shown in Figure 12, Figure 13, and Figure 14.

1	ا ا	$C^{k}=-k^{\prime}$								PCB I	rspection.cs	r - Excel					8	н	erish Goupal	. 🕤	œ -	0	×
	ie i	lone Inter							♥ Tell me														
8	ste Cipi	lat lopy + ormat Painter lard	Calbri B J	- 11 - U - 🖂 - 🙆 Fot	А́ А́ А́-		\$≥ - •≣ •≣ Abye	한 Wrap Te 문 Merge 8 set	sit. k Center -	General General	% + 3 Netter	- 1 -11 - Co Fo	inditional mailting -	Format as Table ~ Si Tyles	Cel Ir yes *	sert Delete	Format	∑ AutoSut	Sort & Filter	P Find & Select *			~
F2	7			fit Pass																			
1	A	8	с	DE	E.	G	н	1.1	1	к	L .	м	N	0	P	Q	R	s	т	U	v	w	
				Elapsed Time (ms)	Acquire Image of AVR Trainer Board:Ste o Status -	Vision Assistant 1:Step Status -	Microcor troller :Step Status -	Microcon troller :# Matches -	Microcon troller :Match [1].Score	5V Buzzer:St ep Statun	SV Buzzer:#	SV Buzzer:M atch [1].Score	DC Powe Jack Step	r DC Powe Jack# Matches	DC Powe r Jack:Mat ch	Potentio meter:Str	Potentio meter:# Matches	Potentio meter M tch - 111.5core	Reset Button:St	Reset Button:#	Reset Button:M atch	Power ON/OFF Switch:St	Po Di Sui
5	Iteratio	Date	Time	Status	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inc
6		1 papagage	51:44.1	Pass	Pass	Pass	Pass	1	927.3433	8 Pass		923.9522	Pass		1 972.561	5 Pass		1 929.860	Pass		1 954.737	Pass .	
7		2 passages	51:49.0	4943.406 Pass	Pass	Pass	Pass	1	931.4595	Pass		922.1885	Pass		1 958.810	Pass		1 934.005	Pass		1 953.8593	Pass	
8		3 PROPERTY	51:53.3	4705.361 Pass	Pass	Pass	Pass	1	932.6394	Pass		929.3406	Pass		1 970.291	2 Pass		1 935.630	Pass		1 953.5693	Pass	
9		4 sources	51:58.8	5072.387 Pass	Pass	Pass	Pass	1	934.2163	Pass		930.2963	Pass		1 969.642	Pass		1 935.836	Pass		1 954.7018	Pass	
10	Iteratio	Date	Time	Elapsed Til Status	Acquire In	n Vision Ass	i Microcor	t Microcort	Microcon	t SV Buzzer	SV Buzze	SV Buzzer	DC Powe	r DC Powe	r DC Powe	Potention	n Potention	m Potention	n Reset But	t Reset But	tt Reset But	t Power Of	N Po
11		O SABASASI	21:11.7	Pass	Pass	Pass	Pass	1	936.792:	Pass		927.1931	Pass		1 975.138	Pass .		1 933.834	Pass		1 959.4623	Pass	
12		-	22:13.8	62134.02 Fail	Pass	Pass	Pass	1	948.6718	Pass .		948.2708	Pass		1 959.408	Pass .		1 904.881	Pass		1 933.630	Pass	
13	Iteratio	Date	Time	Elapsed Til Status	Acquire In	vision Ass	Microcor	t Microcort	Microcon	t SV Buzzer	SV Buzze	SV Buzzet	DC Powe	r DC Powe	r DC Powe	Potention	Potention	m Potention	n Reset But	t Reset But	tt Reset But	t Power Of	N Pc
14		1 papagage	12:09.3	Fail	Pass	Pass	Pass	1	930.440	Pass .		935.0167	Pass		1 972.269	Pass		1 876.697	Pass		1 948.7343	s Pass	
15		2 PREAMERS	12:14.4	5073.163 Fail	Pass	Pass	Pass	1	934.7053	Pass		934.5834	Pass		1 975.246	Pass		1 885.749	Pass		1 943.6298	S Pass	
16		3 PROFESSION	12:19.3	4851.519 Fail	Pass	Pass	Pass	1	915.334	Pass		935.0038	Pass		1 972.452	Pass		1 882.666	Pass		1 939.694	Pass .	
17		4 seconse	12:24.2	4957.134 Fail	Pass	Pass	Pass	1	936.9795	Pass	1 3	933,4998	Pass		1 973.24	Pass		1 889.251	Pass		1 943.784	Pass	
18		5 papagage	12:29.3	5149.601 Fail	Pass	Pass	Pass	1	938.418	Pass		934.6711	Pass		1 974.215	Pass		1 884.60	Pass		1 942.0968	5 Pass	
19		6 sasasas	12:34.4	5053.149 Fail	Pass	Pass	Pass	1	938.116	5 Pass		932.6865	Pass		1 972.970	5 Pass		1 892.601	Pass		1 941.8043	Pass	
20		7	12:39.1	4757.73 Fail	Pass	Pass	Pass	·	919.942	i Pass		937.5105	Pass		1 973.42	Pass		1 895.109	Pass		1 942.677	Pass	
21	Iteratio	Date	Time	Elapsed Til Status	Acquire In	Vision Ass	Microcor	Microcort	Microcon	t SV Buzzer	SV Buzze	SV Buzzer	DC Powe	r DC Powe	r DC Powe	Potentio	Potention	m Potention	Reset But	Reset But	tt Reset But	t Power Of	N Pc
22		1 PARAPART	15:33.7	Fail	Pass	Pass	Pass	1	944.658	5 Pass		940,7647	Pass		1 956.716	Pass		1 921.5	Pass		1 944.370	Pass	
23		2	15:38.5	4829.941 Fail	Pass	Pass	Pass	1	948.37	Pass		952.0385	Pass		1 974.385	Pass		1 924.987	Pass		1 935.7872	Pass	
24		3 -	15:43.5	5025.377 Fail	Pass	Pass	Pass	· - i	951.620	Pass	1	951.8927	Pass		1 973.085	Pass		1 922.94	Pass		1 935.02	Pass	
25		4	15:48.6	5052,394 Fail	Pass	Pass	Pass	· 1	951.913	Pass	1 1	950.477	Pess		1 973.729	Pass		1 922.510	Pass		1 934.874	8 Pass	
26		5 papagage	15:53.6	5033.401 Feil	Pass	Pass	Pass	1	952.738	8 Pass		952.5446	Pass		1 973.411	Pass		1 922,743	Pass		1 934.6054	Pass	
27	1	6 ##########	15:58.5	4934.375 Fail	Pass	Pass	Pass	1	953.6638	8 Pass	1	947.7935	Pass		1 974.543	5 Pass		1 924.933	Pass		936.3595	> Pass	

Fig 12. PCB Inspection Result

8	• ب	d - +									PCB	nspection.cs	v - Eccel				1		н	rish Goupal	•	⊞ -	0	×
	Но	me Inser				ata Revie																		hare
Past	Cipboa	py – mat Painter d	Calibri B I	U ∼ I ⊞ Font	- 11 - - 🙆 -	A' A' A - -		i 🌮 - Elli Elli Alignm	방 Wrap Te 팀 Merge 8 ent	set & Center -	General General	% + 5	• • • 0 • • 0 • • 0	onditional i matting -	Format as Table - St Styles	Cell Ir yles *	sert Delete	Format	∑ AutoSum ↓ Fill ~ ♦ Clear ~	 A Z Sort & Filter → Edting 	Find & Select ~			~
F27			x v	fx Pas	iS																			*
d.	х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	1
P	ower N/OFF witch:#	Power ON/OFF Switch:M atch	7805 Voltage Regulator :Step	7805 Voltage Regulator	7805 Voltage Regulator :Match	8 LEDs:Step	8 LEDs:#	8 LEDs:Mat	Resisater s 220 Ohms:Ste	Resisater s 220 Ohms:#	Resisater s 220 Ohms:Ma tch	12MHz Crystal Oscillator :Step	12MHz Crystal Oscillator	12MHz Crystal Oscillato :Match	W04 Bridge Rectifier Diode:Ste	W04 Bridge Rectifier e Diode:#	W04 Bridge Rectifier Diode:Ma tch	1st Electrolyt ic Capacitor :Step	1st Electrolyt ic Capacitor :#	1st Electrolyt ic Capacitor :Match	2nd Electroly ic Capacito :Step	2nd Electroly ic Capacito	2nd Electroly ic Capacito :Match	e 2* Jr He pit
N	latches -	[1].Score	- Status -	Matches -	[1].Score	- Status -	Matches -	[1].Score	- p Status -	Matches	- [1].Score	- Status -	Matches	[1].Score	- p Status -	Matches	- [1].Score	- Status -	Matches -	[1].Score	- Status -	Matches	- [1].Scor	e - Sti
5 1	nspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	Inspect	In:
6	1	977.0524	Pass	1	978.5021	Pass	1	915.1018	Pass		1 948.615	Pass	-	924.411	5 Pass		1 915.590	Pass	1	958.127	Pass		933.82	8 Pa
0		977.41/5	Pass		070 1471	Pass		913.51	Pass	1	1 940.700.	Pass Darr	-	036 755	2 Pass		1 920.0320	0 Pass		958.3074	Pass		035.364	6 0.
0		077 6405	Pass		070 2125	Pass		015.0524	Pass	1	1 947.273	Pass Darr		070.117	7 Date		1 918.023	Pass		938.334	Dass		024 264	o Pa
10 0	ower OA	Power ON	7805 Volt	= 7805 Volt	= 7805 Volt	RIFDerSte	SIFDer#1	8 IFDe-M	Reciptors	Recienter	e Resisator	121417 0	12MHz C	12MHz C	n W04 Brid	a WM Brid	a WM Brid	a 1st Flacte	n 1st Flectro	1st Flactr	a 2nd Elect	n 2nd Elect	r 2nd Flac	tr. 2 1
11	1	978.5725	Pass	1	979.8716	Pass	1	920.4506	Pass		1 945.850	Pass	122.00.00	926.678	1 Pass	6 tre i ente	1 922.944	Pass	1	960.155	Pass	End End	934,864	4 Pa
12	1	974 8956	Fail	0	1	Pass		927 3273	Pass		1 960 755	Pass		951.866	5 Pass		1 956.63	Pass		963 186	Pass		930.840	1 Pa
13 P	ower ON	Power Oh	7805 Volt	a 7805 Volt	z 7805 Volt	81FDs-Ste	81FDs #1	81FDs-M	Resisaters	Resisater	s Resisater	12MHz C	12MHz C	12MHz C	ry WD4 Brid	w04 Brid	le W04 Brid	1st Electr	a 1st Electro	1st Electr	2nd Elect	2nd Elect	ri 2nd Eler	tr. 2 1
14	1	972.8054	Fail	0)	Pass	10 120 7	909.7695	Pass		1 946.843	Pass	1 ILINIE C	926.316	6 Pass	6	1 941.284	Pass	1	960.535	Pass		934.66	3 Pa
15	1	972 8513	Fail	0)	Pass		903.3544	Pass		1 949 145	Pass		927 680	9 Pass		1 925 431	Pass	1	960.232	Pass		934.01	6 Pa
16	1	973 5809	Fail	0		Pass		908 8469	Pass		1 953 503	Pass		923.668	R Pass		1 925 693	Pass	1	958 066	Pass		933 101	Q Pa
17	1	971.7795	Fail	0)	Pass		910.4453	Pass	1 3	1 952.664	Pass		927.594	7 Pass		1 925.837	Pass	1	958.787	Pass		937.809	8 Pa
18	1	969.5051	Fail	0	1	Pass		908 3544	Pass	1	1 954 897	Pass		928.85	R Pass		1 928 824	Pass	1	959.032	Pass		935 458	d Pa
19	1	970.0001	Fail	0	,	Pass	1	913.1055	Pass		955.67	Pass		928.311	2 Pass		1 928.946	Pass	1	961.286	Pass		936.431	8 Pa
20	1	969.005	Fail	0		Pass	1	912 0386	Pass	1	1 956 689	Pass		924 797	2 Pass		1 926 323	Pass	1	960.626	Pass		936.779	3 Pa
21 P	ower ON	Power ON	7805 Volt	7805 Volt	7805 Volt	8 LEDs:Ste	81EDs:#1	N 8 LEDS:M	Resisaters	Resisater	s Resisater	12MH/ C	12MHz C	12MHz C	n W04 Brid	le W04 Brid	e W04 Brid	a 1st Electr	a 1st Electro	1st Electr	a 2nd Elect	2nd Elect	rs 2nd Elec	tri 2 *
22	1	968.079	Fail	0)	Pass	1	914,7829	Pass		1 951.64	Pass	100000	939.658	8 Pass		1 920.132	Pass	1	956.743	Pass		926.384	2 Pa
23	1	972.1387	Fail	0)	Pass	1	921.2989	Pass		1 959.20	Pass		952.29	3 Pass		1 920.661	Pass	1	958.514	Pass		928.640	4 Pa
24	1	966.5333	Fail	0)	Pass	1	924.6181	Pass		961.365	Pass	1	952.668	2 Pass		1 921.338	Pass	1	959.552	Pass		929.050	6 Pa
25	1	972,996	Fail	0		Pass	1	925.4215	Pass		1 960,808	Pass		956.466	7 Pass		1 916.001	Pass	1	957.011	Pass		928.858	8 Pa
26	1	975.0664	Fail	0		Pass	1	926.8937	Pass	1	1 961.715	Pass	1	957.054	1 Pass		1 917.697	Pass	1	963.429	Pass		931.716	6 Pa
27	1	974.6293	Fail	0	1	Pass	1	927.667	Pass		1 962.02	Pass		957.998	4 Pass		1 920.895	Pass	1	961 593	Pass		933.840	3 Pa
TTO:	-	PCR Inen	ection																					

Fig 13. PCB Inspection Result

Fig 14. PCB Inspection Result

5. Application Window of Automated PCB

The NI LabVIEW has been used to develop the application of the Automated PCB Inspection System. By using Vision Builder AI Pallete, an API (Application Programming Interface) has been created to control Vision Builder AI programmatically through LabVIEW. There are two windows located in LabVIEW. The front panel window and the block diagram window. The front panel is the user interface of the VI. The user interface of the Automated PCB Inspection System is shown in the Figure 16. To design the user interface, we have used tools such as Image Display and Boolean buttons. The block diagram of the system is shown in the Figure 17. In the block diagram window, we have used tools such as Open Inspection.vi, Get Inspection info.vi, Get Inspection results.vi and Run Inspection Once.vi. The state machine architecture has been used to build the whole block diagram of the Automated PCB Inspection system. A state machine is an architecture that allows the dynamic flow of states depending on values from user inputs. The execution of the block diagram depends on the following four states Initialize, idle, Return and Stop. In the Initialization condition, the system launches a local vision builder AI engine to open and run the inspection. In the Idle condition, the system opens an inspection and then runs one iteration of the inspection currently loaded by the vision builder AI engine associated with the session and then returns results for all steps in the inspection. The results are updated after each iteration and are not updated asynchronously. The step results are given by the system in the form of an array. In the Return condition, the system closes a local Vision Builder AI engine and reverts back to the Initialization level. And in the stop condition, the user can stop the execution of VI by using the Stop button.

Fig 15. Application window of Automated inspection system

Fig 16. Block diagram of Automated PCB Inspection System

6. Result

The proposed automated PCB inspection system is used to inspect the AVR Trainer Board. Initially, it takes one minute to start the inspection and then it gives the result of each inspection within 10 seconds. In every inspection, it checks all the components of AVR Trainer Board one by one and displays the results on the Application window of the Automated inspection system shown in figure 16. If the component is present then it displays a green button. If the component is missing or improper positioned then it displays a red button. The final result of the inspection depends on the status of all the components. Also, to maintain the inspection data the system stores result of every step in the CSV file type.

7. Conclusion

The proposed Automated assembled PCB inspection system is useful at the final stage of the PCB manufacturing process in manufacturing industries. because it detects the defects such as missing components and improperly positioned components. It has been found that the proposed system is useful for small PCB manufacturing units. They can adopt this system to reduce the time of the inspection and minimize errors. It is a very low-cost inspection setup for small industries. It can be easily implemented with a simple camera and one computer.

References

- M. Kumar, M. Kumar, G. Kumar, "PCB Image Enhancement using Machine Vision for Effective Defect Detection", international Journal of Advanced Engineering Research and Science (IJAERS) Vol-1, Issue-3, pp.50-53, Aug- 2014.
- [2] T.J. Mateo Sanguino and M.S. Rodriguez, "Computer-Aided System for Defect Inspection in the PCB Manufacturing Process", In the 16th IEEE International Conference on Intelligent Engineering Systems, pp. 151-156. 2012.
- [3] Z. Li, Q. Yang, "System design for PCB defects detection based on AOI technology", In IEEE, International

Congress on Image and Signal Processing, Vol-4, pp.1988-1992, 2011.

- [4] Manasa H R, Anita D B, "Fault Detection of Assembled PCB through Image Processing using LabVIEW", International Journal of Engineering Research and Technology (IJERT) Vol-5, Issue 05, May-2016.
- [5] Anitha D B, Maahesh Rao, "SMT Component Inspection in PCBA's using Image Processing Techniques", International Journal of Innovation Technology and Exploring Engineering (IJITEE) ISSN:2278-3075, Vol-8, Issue-12, October 2019
- [6] Manoj Kumar, Mrs.Shimi S.L, "Automated Checking of PCB Circuits using LabVIEW Vision Toolkit", International Journal Of Advance Research Ideas And Innovations In Technology (IJARIIT) ISSN: 2454-132X, Volume2, Issue-4, 2016.
- [7] A.J. Crispin V. Rankov, "Automated inspection of PCB Components using a Genetic algorithm templatematching approach", Springer-Verlag London Limited ,25 October 2006.
- [8] Hendawan Soebhakti, Farkhad Ihsan Hariadi, "Automatic Optical Inspection to Detect Missing Components in Surface Mount Assemblies", ICE-ID, -p2m.polibatam.ac.id, 2013
- [9] Tejas Khare, Vaibhav Bahel, Anuradha C. Phadke, "PCB-Fire: Automated Classification and Fault Detection in PCB", Third International Conference on Multimedia Processing, Communication & Information Technology (MPCIT), Conference paper, December 2020.
- [10] Wen-Yen Wu, Mao-Jim J. Wang, Chih-Ming Liu, "Automated Inspection of printed circuit boards through machine vision", ELSEVIER., Computers in Industry 28 (1996) 103-111
- [11] B. Koray Tuncalp, Sezai Taskin, Yusuf Turgut, "Automated Image Processing System Design for Engineering Education: The Case of Automatic Inspection for Printed Circuit Boards", Journal of Engineering Technology, Spring, April 2015.
- [12] Der-Baau Perng, Hsiao-Wei Liu, Ching-Ching Chang, "Automated SMD LED inspection using machine vision", Int J Adv Manuf Technol 57:1065-1077, Springer-Verlag London Limited April 2011.
- [13] F. Xie, A. L. Uitdenbogerd, and A. Song. "Detecting PCB component placement defects by genetic programming", in International Conference on Image and Vision Computing on IEEE, pp. 406-411, 2013
- [14] Ms. Prachi P. Londe, Prof. Atul N. Shire, "A Review of Automatic PCB Defects Detection and Classification" in International Journal of Emerging Trends in Engineering and Development in Issue 4, Vol.1(January 2014).
- [15] Prof. Malge P.S. Nadaf R. S. " A survey : Automated Visual PCB Inspection Algorithm", in International Journal of Engineering Research & Technology (IJERT) on Vol.3 Issue 1, January – 2014.