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As environmental awareness has been culminating for the past few decades, peo-
ple have been switching towards renewable sources of energy such as solar energy,
wind energy, and hydropower. Among these, solar energy seems to be largely used
due to the availability of solar energy in abundance, which in turn, has led to amass
increase in the number of solar power plants. Nevertheless, these solar panels are
left unattended due to difficulty in the maintenance of solar power plants in large
areas and the manual work required. It is important to find and replace these de-
fective panels in time before any severe event occurs. Detecting hotspots, cracking
and various other malfunctions in the photovoltaic cell can lead to an increase in
the life of the solar panels by 5-10 years. In this paper, we propose a compact intel-
ligent photovoltaic module diagnosis system based on a Deep Learning model that
uses multilayer perceptron (MLP) to accurately identify and classify the faults in
the photovoltaic module. We have achieved this by tweaking the VGG16 convolu-
tional network architecture to detect 3 kinds of malfunctions – Hotspots, Cracking,
Diode, and No-Anomaly for panels that are in good condition by using 2310 images
for training, 665 for validation, and, 665 for testing. By using accuracy-score from
sklearn.metrics, the model’s accuracy was estimated to be above 90 percent for
classifying photovoltaic modules.
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1 Introduction 
 
Solar photovoltaic energy is becoming increasingly popular worldwide. In addition to addressing climate 

change, the reason behind this is also to generate new economic opportunities and most importantly to 

provide energy access to countless people still deprived of modern energy facilities. The global clamor for 

harnessing the sun's energy has increased rapidly over the past decade, as highlighted in the IRENA 2021 

India Status Report, which asserted that solar PV capacity increased from 65 Megawatts in 2010 to 38 

Gigawatts in 2020. In 2020 alone, 4 gigawatts were added. There have been numerous solar PV 

installations across India, including in shopping malls, residences, and commercial establishments. The 

concern now is that, after these solar modules have been installed, less attention is paid to evaluating 

whether they are still operating at their best after five or ten years. The ideal solar PV module should last 

for 20 to 25 years. 
 
Due to a variety of factors, this lifespan is reduced, and without proper monitoring, one would not know if 

a solar PV module has already ceased to operate [6]. Typically, these damages begin as hotspots. A 

hotspot is a defect found in a solar photovoltaic module that adversely affects its performance. Hotspots 

can occur for a variety of reasons. Shading is one of the most common causes. 

 

Any object that physically blocks the solar PV module can produce shade, such as a branch of a tree, an 

antenna, a nearby building, or dirt. When one cell is shaded, the current flowing through the other cells is 

reduced. The good cells that produce higher voltages usually reverse bias the bad ones. Poor cells dissipate 

a lot of energy when this happens. Overheating or hotspots are caused by the large dissipation of power in 

small areas. This can result in ongoing yield reductions, and hotspots can potentially catch fire in the 

worst-case scenario. Another reason for a hotspot could be a flaw in the module, such as a fracture or a 

dent. This defect becomes a load, so the current additionally concentrates on the current space, inflicting a 

huge dissipation of power within the broken cell, hence, making a hotspot [7]. As a result, the output 

power decreases, thereby decreasing the potency of the PV module [5]. For the purposes of assessing the 

performance of solar PV modules and obtaining parameters such as maximum power output and 

conversion efficiency, current-voltage (I-V) characterization is used. It is, however, not feasible to do this 

in large-scale PV systems because each module needs to be disconnected from the array and attached to 

the I-V curve tracers [6]. This is time-consuming and inconvenient if large solar PV power plants are to be 

considered. Taking into account these points, an imaging system that can be used to determine the 

operating conditions of a solar PV module is presented in this study. Therefore, these are the objectives of 

this project: Develop a non-invasive technique to locate hotspots in the solar PV module using a hotspot 

detection algorithm, this measure can be used to detect different kinds of malfunctions, and it is non-

destructive, contactless, and efficient. There are three major types of malfunctioning PV modules, i.e., hot 

spots, potential-induced degradation (PID), and open circuits [4]: 

 
a) Cracking: When microcracks form in a solar panel, the affected solar cells will have trouble 
conducting electric currents, which lead to poor energy production and hot spots. 
b) PID: PID (Potential Induced Degradation) is a condition that may occur a few years after 
installation. It can be caused by humidity, heat, or voltage. The temperature of the malfunctioned cell is 
also higher than others and results in a larger and extremely hot area. 
c) Hot spot: A hot spot is the most common PV module defect. Hot spot results in a higher 
temperature and may be caused by many reasons, including short circuits, overhead objects, surface 
fouling, cell material defects, cell cracks, broken glass, and so on. 
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2 Analysis 
 

Table 1. Comparing proposed model accuracy with state-of-the-art algorithms 
 
 

Serial No. Algorithm used Accuracy 

1 K-means Clustering 85 

2 K-means Clustering using 87 
 DBSCAN  
3 YOLO-PV[20] 91 
4 AlexNet 90 

5 K-nearest neighbors 87 

6 Region-Based Convolutional 73 

 
Neural Networks and 
supervised  

 learning  
7 YOLOv3 70 

8 VGG16 92 
   

 

 

3 Methodology 

 

1) Dataset:  The proposed model is trained on a labeled dataset, InfraredSolarModules, that contains 

real-world imagery of different anomalies found in solar power plants. This [4] dataset contains 11 

different classes of anomaly and the remaining class is non-anomaly, which is a nominal solar panel, out 

of which we have chosen 4 of those categories – Cracking, Diodes, Hotspots, and No-Anomaly to train the 

model (see Fig. 2). Out of these 2310 images have been chosen for constituting each class for training, 665 

images have been used for validation, and 665 images for testing the model which has been represented in 

fig. 1. Every infrared image has a pixel value of 24 by 40 each.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig 1. The number of training images used per category using the flow from directory function 
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Fig 2. Canonical examples of solar module anomalies observable in infrared imagery.[4] 
 

 

2) Image Preprocessing: The images are already in grayscale, therefore conversion of RGB to 

grayscale was not required. But the images were put all together without any distinguishing labels for 

which another program had to be written to create an empty folder for each type of malfunction, fetch 

images from the main dataset, and classify those images in their respective folders based on 

information in the JSON file. The batch size being used is 32, and the number of epochs used is 30, 

which was decided based on the validation dataset accuracy. The input to the model is given using data 

generators which read the input images and feed them to the image classifier model. Here we have also 

rescaled the training and testing images in such a way that the pixel value ranges between [0,1]. The 

target size of the image has been set to (224,224), and the input images are resized to this value. The 

class mode is set to categorical, given the nature of the output. 
 

Table 2. InfraredSolarModule Dataset Segregation 
 

 
Serial No. Input Data Number of Images 

1 Training Images 2310 

2 Validation Images 665 

3 Testing Images 665 
   

 

 

3) Model Training and Defining Model Parameters:  The learning rate of the model 

has been set to 5E-05, epoch to 30, and additionally a checkpoint has been created where the model 

with the best validation accuracy is being saved. The model is compiled using categorical cross-entropy 

loss, and the optimizer used is Adam. The model uses a pre-trained deep learning network [10] VGG16 

as the basis of the solar image classifier model, and then it is retrained on our dataset. The parameter 

―pooling= ‗max‘ is used because rather than connecting the convolutional base of the VGG16 model to a 

couple of fully connected layers before the final output layer (which is done in the original VGG16 

model) [10] and it takes the average of each feature map and feeds it directly into the SoftMax layer [3], 

we rather use a max-pooling output as it seemed to work better than average pooling in this case [3], 

[10]. This approach is an alternative to using fully connected layers to transition from feature maps to 

an output prediction for the model. This makes the model less prone to overfitting. The model is 

retrained on all the layers without freezing any of the layers of the VGG16 network. 
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Fig 3. Basic architecture of CNN model for the Fault Detection system. 
 
 
 

4) Very Deep Convolutional Neural Network for Large-Scale Image 

Recognition (VGG16) Architecture:  The input to a VGG16 has to be a fixed 224 x 224 RGB 

image. The architecture starts with two sets of 2 convolutional layers followed by 1 max-pooling layer, 

further it has 3 sets of 3 convolutional layers followed by 1 max-pooling layer. After this, there are 3 fully 

connected layers in the form of 1 x 1 x 1000, i.e the output shows 1000 classes as it was trained on the 

ImageNet dataset. This final layer can be built as to our preference based on the number of classes in our 

dataset, which is 4 in this case. VGG16 seemed to capture more complex features as compared to 

AlexNet because of the deep neural network that it is and due to the increased layers. The convolutional 

base layers were frozen as they captured the general features. The final classifier was built on top of it 

according to the problem as it captures problem-specific features. The last layer was to be flattened and 

then a dense layer was created, with 4 output classes and the activation function used was softmax. The 

softmax function classes the output probabilities of each class in the range [0,1]. These probabilities add 

up to 1 and therefore are better used for multinomial logistic regression as compared to binary 

classification.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4. Trainable layers of VGG16 model summary 
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5) Model Accuracy: The model is fitted using a fit generator function which uses the train generator 

images and estimates the accuracy for the validation dataset and losses. The model with the highest 

validation accuracy is then saved to the Solar module file where the final model is saved  (Fig.5) Ideally, 

the validation accuracy must increase for each epoch and the validation loss must keep on decreasing as 

we keep training the model, and eventually reach a steady value when our model is not able to learn any 

more useful information from our training data. By analyzing this trend, we can finalize the number of 

epochs required to train the model. From the output shown above, we see that the loss decreases while the 

accuracy increases during the training process. Each time the validation accuracy reaches a new 

maximum value, the checkpoint file is saved (output: ―saving model to Solar_module_without_augm.h5‖. 

After the training has been completed, we then can load the checkpoint file which has the best validation 

accuracy during training. This is the final model which can also be used to create an interface, such as a 

web app to classify the model by simply uploading the images by the user.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig  5. Training of model 

 

6) Accuracy and Loss Visualization:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Training and Validation accuracy and loss obtained 
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As shown in the above figure. 6, the training accuracy is shown using the blue line, and almost after 20 

epochs, it reaches an accuracy of almost 1 (which represents classifying 100% of the training images 

correctly) and then tapers off from there. However, the validation accuracy is the accuracy measured on 

the validation set, which is the accuracy we care about. In this case, the accuracy leveled off at around 

95%, meaning that we successfully classified almost all of the images in our validation set to the correct 

category. In a summary, we have finally visualized subsets of testing images to get an idea of how 

accurately the model can classify the solar panels.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 7. Classification of solar panel images by model 
 

4 Results & Conclusion 
 
In this paper, we propose a deep learning model to classify Photovoltaic modules as malfunctioning or 

normal. For this method, the model is trained with IR images that are read using data generators, 

preprocessed by using data augmentation, and built upon the VGG16 model which gives a 90.7% 

accuracy. The model has used transfer learning by training all the layers of the VGG16 model [10] to fit 

according to the InfraredSolarModule Dataset [4]. Due to this, the accuracy of the proposed model is 

better as compared to the accuracy obtained using K-means clustering (85%) or using DBSCAN clustering 

[8], which gives an accuracy of around 87%. The accuracy of the model is obtained by using the accuracy 

score function in the sklearn metrics library. The user can save the cost that goes under buying a new 

panel or repairing the less damaged solar panels by detecting the anomaly in the panel beforehand or in 

the early stages, which would then increase the lifetime of the solar panel by 5-10 years. The performance 

of this model can be further increased by adding layers manually to the architecture of the model. 

Therefore, we recommend using VGG16 along with transfer learning to classify malfunctions more 

accurately. 
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