Cracking the Figurative Code: A Survey of Metaphor Detection Techniques

Vrinda Kohli¹, Himanshu Nandanwar², Rahul Katarya²

Manipal University Jaipur, India¹ Delhi Technological University, India²

 $Corresponding \ author: \ Himanshu \ Nandanwar, \ Email: \ himanshun and \ anwar 9 cm 0 @gmail.com$

Metaphor Detection is a crucial area of study in computational linguistics and natural language processing, as it enables the understanding and communication of abstract ideas through the use of concrete imagery. This survey paper aims to provide an overview of the current state-of-the-art approaches that tackle this issue and analyze trends in the domain across the years. The survey recapitulates the existing methodologies for metaphor detection, highlighting their key contributions and limitations. The methods are assigned three broad categories: feature-engineering-based, traditional deep learning-based, and transformerbased approaches. An analysis of the strengths and weaknesses of each category is showcased. Furthermore, the paper explores the annotated corpora that have been developed to facilitate the development and evaluation of metaphor detection models. By providing a comprehensive overview of the work already done and the research gaps present in preexisting literature, this survey paper hopes to help future research endeavors, and thus contribute to the advancement of metaphor detection methodologies.

Keywords: Metaphor Detection, Natural Language Processing, Linguistic Analysis, Computational Linguistics, Lexical Semantics

1 Introduction

Roughly 12% of the words used in a natural language document are used metaphorically [1]. Metaphors are linguistic tools that present comparisons between two seemingly unrelated ideas through shared traits. They act as a means to describe abstract concepts through vivid imagery. A metaphor is defined by a stark difference in its literal and contextual meanings (Fig 1). For example, in the phrase "I am a forest fire" [2], the speaker does not mean that she is an actual forest fire, but instead uses the phrase to convey the raging intensity of her emotions, displaying a vast disparity between the literal and contextual sense of the expression "forest fire".

Automated Metaphor Detection involves identifying a metaphorical word (or token) in a given text sequence by a machine learning model. This demands a deeper understanding of the often subtle, figurative language used which requires computational models to go beyond surface-level interpretations and delve into the underlying semantic layers of the sentence to capture relevant contextual information. Consequently, the detection of metaphors warrants sophisticated approaches that can encompass the intricacies in the interplay between language, context, and figurative expressions to achieve reliable and insightful results. This task also shows importance in other natural language processing tasks such as machine translation [3], sentiment analysis or opinion mining [4], dialogue systems [5], and machine reading comprehension [6].

The pre-existing techniques for metaphor detection can be broadly classified into three categories. Feature-based methodologies deal with extracting metaphor-specific features from the corpus to identify the need. Traditional Deep Learning-based approaches employ various RNN and hybrid architectures to model the sequential nature of sentences. Lastly, transformer-based approaches use attention-equipped encoder-decoder-style pre-trained architectures (BERT, RoBERTa, etc.) to capture semantic and syntactic relationships from the input text.

Thenceforth, the study of metaphor detection holds considerable implications for understanding language, cognition, and communication. By examining the existing literature, this survey paper attempts to shed light on research gaps. This paves the way for further advancements in the field for developing robust and context-aware models that show generalization across different languages, cultures, and domains. Through this paper, we hope to provide a comprehensive resource for researchers interested in the field of automated metaphor detection.

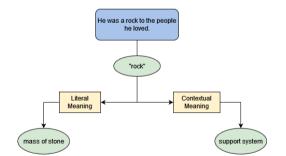


Figure 1. Metaphors have different literal and contextual meanings

2 Literature Review

2.1 Previous Studies

The techniques employed for metaphor detection (MD) have witnessed various trends over the years. In the earlier years of research about this problem, a lot of focus was given to hand-crafted metaphorcentric features. [7] used word concreteness and abstractness as defining features, while [8] used feature norms. Imageability [9], bag-of-words features [10] and sparse distributional features [11] have also been used as linguistic features for machine learning models.

Next came techniques utilizing Neural architectures, such as BiLSTM [12], CNN-hybrids [13], and Graph Neural Networks [14] [15]. These methods popularized the use of word embeddings such as GloVe [16] and Elmo [17] vectors for metaphor detection. [18] further integrates linguistic theory conventions Metaphor Identification Procedure (MIP) [19] and Selectional Preference Violation (SPV) [20] by modeling them as neural architectures.

Transformer-based approaches typically model linguistic rules and other contextual information by using BERT or RoBERTa encoder modules, using those in conjunction with techniques such as context denoising [21], self-supervised learning [22], reading comprehension [23] and parse-tree alterations [14].

A detailed survey covering the specifications of all three approaches can be found in Table 1, and Table 2 demonstrates the quantifiable results obtained by these models. The survey involved studies done over the past six years and presented findings from ten prominent papers in the field.

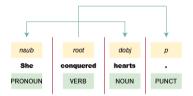


Figure 2. Metaphors with verb-noun direct object relation

2.2 Publicly Available Datasets

There are primarily three datasets on which experimentation about MD tasks is performed.

VUA: The VU Amsterdam Metaphor Corpus (VUA) [24] dataset is the largest publicly available dataset annotated for metaphor detection tasks. It is sampled from the British National Corpus across four genres (Academic, News, Conversation, and Fiction), and consists of 117 fragments. It has over 2000 unique verbs, and the metaphors are distributed with a natural likelihood (~10%).

MOH-X: MOH-X [25] is a verb metaphor detection dataset that has data points sampled from WordNet [26] example sentences. Each sentence has only a singular metaphor tagged in it. The average sentence length is 8 tokens and 48.69% of the words are metaphorical.

TroFi: TroFi [27] is a single target verb metaphor detection dataset that is comprised of sentences from 1987-1989 Wall Street Journal Corpus Release-1. The average length for this dataset is 28.3 tokens per sentence, which is the longest among the three datasets explored. The percentage distribution of metaphors in the dataset amounts to 43.54%.

Model	Year & Ref	Category	Contribution	Methodology	Limitations	Advantages
BiLSTM	<u>a ker</u> 2018 [12]	Traditional DL approach	Utilization of BiLSTM models with ELMo embeddings for MD.	Tokens concatenated with their ELMo embeddings are encoded using a BiLSTM module. The detection task is modeled in two ways: the classification task is done by using a feedforward neural network, and the sequence labeling task applies an attention layer for computing attention weight per token for weighted classification.	BiLSTM encoder struggles to capture metaphors with long- range dependencies, indirect metaphors, and personification -related metaphors.	Infers that predicting metaphor labels of context words helps predict the target word and that contextualized word vectors improve model performance
Disc	2019 [28]	Feature Engineerin g approach	Usage of broader discourse- based features to train gradient boosting classifiers for MD task	The GloVe embeddings, doc2vec vectors, skip- thought vectors, and ELMo embeddings are obtained and their concatenation is used as a feature vector for input to a gradient boosting algorithm (XGBoost)	Conversation- based metaphors are harder to detect and this approach has an a-priori need for broader context beyond sentence level.	Competitive results without neural architectures or manually- engineered metaphor- specific features. The usage of paragraph-level context vastly improves detection performance.
DeepMet	202 0 [23]	Transforme r based approach	Reading comprehensio n paradigm for	MD is considered to be a reading	Faces difficulties in detecting	Demonstrates that FGPOS features provide

Table 1.	Existing	Methodologies
----------	----------	---------------

	1					1
			MD at a token	comprehensio	metaphors	more
			level.	n task, based	triggered by	information
				on context and	multiple words	than standard
				query words.	since the	POS features.
				It involves	queries are	The metaphor
				inputting	answered one	preference
				global and	word at a time.	parameter
				local text	Downsampling	models real-
				contexts,	via average	world scenarios
				query	pooling may	in dealing with
				features, POS	lead to the loss	imbalanced
				features, and	of relevant	datasets.
				FGPOS	information.	
				features into a		
				Siamese		
				architecture		
				with two		
				separate		
				BÊRT		
				encoders for		
				local and		
				global		
				features. The		
				encoders		
				share weights		
				and an		
				average		
				pooled vector		
				is used as		
				input to the		
				metaphor		
				discrimination		
				module.		
				Cross-		
				validation		
				introduces a		
				metaphor		
				preference		
				parameter.		
WSD-	202	Traditional	Leverages	A BiLSTM is	The usage of	The GCN
GCN	0	DL	Graph	used to obtain	dependency	approach
	[14]	approach	Convolution	a feature	parse trees	successfully
	1-41	approach	Networks	vector from	imposes a	identifies
			(GCN) with	GLoVe, ELMo,	reliance on the	relevant context
			dependency	and index	dataset	words based on
			parse trees	embeddings of	structure for	their
			and a multi-	the sentence,	successful	importance. The
			task	which is then	generalization	multi-task
			framework for	inputted into a	of the	approach
			exploiting the	GCN module.	approach. A	handles the
			similarity of	The GCN and	lack of cross-	issue of
	I					
			MD and word	DILCTM		
			MD and word sense	BiLSTM vectors are	dataset evaluation	knowledge transfer between

						· · · · · · · · · · · · · · · · · · ·
			disambiguatio n (WSD) tasks.	aggregated via calculated control vectors that filter out irrelevant information. A dense network with a Softmax layer is used for MD. Owing to the multitask approach. Two encoders are trained alternatively and simultaneousl y for WSD and MD to share knowledge between the two tasks.	leaves the question of generalizabilit y unanswered. This technique is hard to apply to batch optimization due to the complicated tree-related structure.	two tasks when the dataset is only annotated for one of the two.
MWE- GCN	202 0 [15]	Traditional DL-based approach	Introduces a multiword expression aware model for metaphor identification	The Dependency parse tree information is treated as an undirected graph. The adjacency matrix of this graph is linearly combined with attention- based matrices, providing fully connected weighted graph matrices to determine relation strength between nodes. These matrices are inputted to different	No comparison with the standard VUA dataset, which is considerably vast in its information and generalization strength is not evaluated. The complex tree- related structure makes this approach less amenable to batch optimization.	Demonstrates that the knowledge of Multiword Expressions can significantly boost the performance of MD methods

				Graph Convolution Networks, the outputs from which are linearly combined. The same process is followed for token-level relations between multiword expression components present in the sentence. The GCN outputs of both architectures are concatenated and passed through another GCN to obtain results.		
		approach	word representation s and linguistic theories, namely Metaphor Identification Protocol (MIP) and Selectional Preference Violation (SPV) for MD	using two RoBERTa backboned encoders and a combined prediction score is obtained post late-stage interaction.	metaphors are much harder to identify. The syntactic structure isn't utilized as context words across subsentences lose their relation.	utilized between the two lingual rules, the sentence vectors can be reused, leading to an amortized cost of encoding. A good level of generalization is achieved across datasets as exhibited in Zero Shot experimentation
CATE	2021 [22]	Transforme r based approach	Introduces a semi- supervised self-training strategy for collecting large-scale	A BERT model is finetuned using pre- existing labeled data. A Target-based Generating	When the available training data size is high, the net gain from self- training drops.	Significant improvement when small- scale datasets are used due to self-supervised data

			candidate	Strategy is	Model	augmentation.
			instances from	used to create	accuracy drops	Self-training
			generated	a large-scale,	when words	leads to a more
			unlabeled	relevant	from	diverse dataset,
			corpus, and a	unlabeled	multiword	bringing about
			contrastive	corpus. The	expressions	better MD in
			objective for capturing MIP	fine-tuned model	are utilized in their literal	underrepresente d genres. The
			is defined.	pseudo-labels	sense.	contrastive
			is defined.	this corpus,	Sense.	objective
				and this data		quantifies the
				is then used to		contrast between
				augment the		literal and
				training data.		contextual
				The fine-		meanings,
				tuned model is		upholding MIP without a bulky
				updated iteratively		architecture.
				using a self-		architeeture,
				training		
				strategy.		
CIA*	202	Feature	Lightweight	Bing API is	Only a	Comparable
	2	Engineerin	algorithm for	queried for	particular style	results without
	[29]	g Approach	Direct Object	the top 50	of metaphor is	bulky deep
			related metaphors	websites related to a	evaluated, constricting	learning architecture. The
			(Fig 2) specific	selected verb,	the extent of	development of
			to the	relevant	evaluation.	a real-world
			cybersecurity	sentences are		corpus is simple
			domain	extracted and		enough to be
				added to the		extended for
				corpus which		usage across
				is then parsed to obtain		multiple domain-specific
				collocated		tasks. This
				nouns. The		approach can
				synsets and		identify multiple
				hyponyms for		metaphorical
				these nouns		instances
				are obtained		present in a
				via WordNet. If the main		sentence successfully.
				synset is not		successionly.
				present in the		
				collocated		
				noun list, the		
				word is		
				predicted to		
				be a		
Frame-		Transformera	Explainable	metaphor. Two RoBERTa	Features such	Usage of
1 million	202 1	Transforme				
BERT	202 3	Transforme r based	and	encoders are	as Frame	FrameNet

	<u> </u>		metaphor	conceptual	Lexical Units,	brings up
			detection by	encoder	and context	performance by
			incorporating	processes the	graphs need to	1.2% owing to
			FrameNet	FrameNet	be explored.	their ability to
			embeddings.	embeddings	_	capture deep-
			_	and the		level semantics.
				sentence		
				encoder		
				models MIP		
				and SPV. The		
				outputs from		
				both encoders		
				are		
				concatenated		
				to obtain		
				input for the		
				classification module.		
RoPPT	202	Transforme	A target-	The original	The usage	The modified
K0111	3	r based	oriented parse	parse tree is	of average	tree structure
	3 [21]	approach	tree structure	reshaped by	pooling may	allows the model
	[21]	approach	is utilized for	rooting the	lead to a loss	to focus on only
			MD by	tree at the	of fine-grained	relevant
			extracting	target word.	details.	information
			semantically	Context	Performance is	about the target
			relevant	Denoising is	lower than	word. Irrelevant
			neighbors of a	performed by	expected for	parts are ignored
			target word.	pruning the	shorter	despite their
				tree based on	sentences.	position in the
				the distance		input sentence.
				between the		Demonstrates
				root and		the robustness
				leaves. Two		of context
				RoBERTa-		denoising
				based		mechanism over
				encoders are		long sentences.
				used for encoding, one		
				for the target		
				word, and the		
				other for the		
				input		
				sentence,		
				followed by a		
				classification		
				module.		

Ref	Model	VUA				TroFi				MOH-2	K		
		Р	R	F1	Acc	Р	R	F1	Acc	Р	R	F1	Acc
[1]	MelBERT	80.1	76.9	78.5	-	53.4	74.1	62.0	-	79.3	79.7	79.2	-
[12]	BiLSTM	68.2	71.3	69.7	81.4	70.7	71.6	71.1	74.6	79.4	73.5	75.6	77.2
[14]	WSD-GCN	74.8	75.5	75.1	93.8	73.1	73.6	73.2	76.4	79.7	80.5	79.6	79.9
[15]	MWE-GCN	-	-	-	-	73.78	71.81	72.78	73.45	79.98	80.40	80.19	80.47
[21]	RoPPT	80.0	78.2	79.1	-	54.2	76.2	63.3	-	77.0	83.5	80.1	-
[22]	CATE	79.3	78.8	79.0	94.8	74.4	74.8	74.5	77.7	85.7	84.6	84.7	85.2
[23]	DeepMet	75.6	78.3	76.9	91.6	72.1	80.6	76.1	77.0	93.3	90.3	91.8	92.3
[28]	Disc	58.9	77.1	66.8	-	-	-	-	-	-	-	-	-
[29]	CIA*	-	-	-	-	72	66	68	69	-	-	-	-
[30]	Frame- BERT	82.7	75.3	78.8	-	70.7	78.2	74.2	-	83.2	84.2	83.8	-

Table 2. Results on Various Metrics

3 Research Gap

After a thorough analysis of existing works, as shown in Table 1, we have identified the challenges and limitations of prior approaches as follows:

3.1 Low Generalizability

On average, the proposed approaches rarely discuss the generalizability across datasets, barring a few exceptions [1] [31]. Probing-based studies done in [32] demonstrate that large gaps exist between the in-distribution and out-of-distribution performances of transformer-based methods for MD tasks, presumably due to annotation bias present across the datasets. This implies that the generalizability across datasets of such approaches is lower than expected.

3.2 Heavy Dependency on Dataset

Upon analyzing trends across various methods, one common denoting factor is that these techniques are highly dataset-specific, which poses a challenge for generalization on real-world data which is usually much more diverse in its linguistic styles, cultural references, and domain-specific terminologies. There is a need to develop methods that do not depend this heavily on their training corpus

3.3 LLM-centric approaches

[14] shows competitive results in MD tasks by leveraging its similarity to Word Sense Disambiguation (WSD) [33]. It is shown in [34] the successful usage of LLMs for solving the WSD task. Thus, cross-domain knowledge can be utilized to apply similar techniques for LLM-centric approaches for MD.

4 Discussion

There are primarily three categories of methodologies discussed in this survey, each having its inherent drawbacks and benefits. Even though all methods show a certain level of sensitivity towards the corpus quality, these effects are vastly pronounced in Feature Engineering methods. These methods are only as good as the hand-crafted features utilized by them and the process of extracting corpus-specific

features implies a lack of generalization capability across unseen data. Thus, rarely used metaphors are difficult to identify [1].

Traditional deep learning-based approaches often lack interpretability. Due to the shallow nature of the neural architectures used, the entire extent of context information across different hierarchical levels is not obtained [23].

Transformer-based methodologies were proposed to primarily tackle the limitations induced by the shallowness of these methods. Due to their superior ability to encode metaphorical knowledge [32] these show state-of-the-art performance on MD tasks (Table 2). Out of all surveyed methods, CATE [22] seems to give the most accurate predictions on VUA and TroFi, owing to its semi-supervised self-training mechanism. On the other hand, DeepMet [23] outperforms all other approaches on MOH-X.

5 Conclusion

Summing up, several approaches to broaching automated detection of metaphors in natural language corpora were discussed in this paper. We have discussed the linguistic aspects of metaphor and how they get modeled as computational tasks. Understanding and recognizing metaphors rigorously through computational techniques is bound to bring significant progress in the aligned natural language processing tasks and provide insight into human cognition.

As the field continues to advance, researchers should focus on developing robust and context-aware models that tackle the prevalent issues with prior techniques, integrating up-and-coming innovations within them. A possible course of action for the authors would be to explore and apply themselves to the research gaps and look into LLM-based methodologies for metaphor detection.

In conclusion, by providing a thorough understanding of the current landscape, challenges, and limitations of the current methods for metaphor detection, this paper hopes to facilitate future research endeavors and foster collaborative efforts for the development of advanced metaphor detection techniques.

References

- Choi, Minjin, Sunkyung Lee, Eunseong Choi, Heesoo Park, Junhyuk Lee, Dongwon Lee, and Jongwuk Lee. "MelBERT: Metaphor detection via contextualized late interaction using metaphorical identification theories." arXiv preprint arXiv:2104.13615 (2021).
- [2] Mitski: A Burning Hill [Song] on Puberty 2. Dead Oceans.
- [3] Shi, Chunqi, Toru Ishida, and Donghui Lin. "Translation agent: a new metaphor for machine translation." New Generation Computing 32 (2014): 163-186.
- [4] Cambria, Erik, Soujanya Poria, Alexander Gelbukh, and Mike Thelwall. "Sentiment analysis is a big suitcase." *IEEE Intelligent Systems* 32, no. 6 (2017): 74-80.
- [5] Dybala, Pawel, and Kohichi Sayama. "Humor, emotions and communication: Human-like issues of humancomputer interactions." In *Proceedings of the Annual Meeting of the Cognitive Science Society*, vol. 34, no. 34. 2012.
- [6] Tu, Ming, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, and Bowen Zhou. "Multi-hop reading comprehension across multiple documents by reasoning over heterogeneous graphs." *arXiv preprint arXiv:1905.07374* (2019).
- [7] Turney, Peter, Yair Neuman, Dan Assaf, and Yohai Cohen. "Literal and metaphorical sense identification through concrete and abstract context." In *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing*, pp. 680-690. 2011.
- [8] Bulat, Luana, Stephen Clark, and Ekaterina Shutova. "Modelling metaphor with attribute-based semantics." In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pp. 523-528. 2017.

- [9] Broadwell, George Aaron, Umit Boz, Ignacio Cases, Tomek Strzałkowski, Laurie Feldman, Sarah Taylor, Samira Shaikh, Ting Liu, Kit Cho, and Nick Webb. "Using imageability and topic chaining to locate metaphors in linguistic corpora." In Social Computing, Behavioral-Cultural Modeling and Prediction: 6th International Conference, SBP 2013, Washington, DC, USA, April 2-5, 2013. Proceedings 6, pp. 102-110. Springer Berlin Heidelberg, 2013.
- [10] Köper, Maximilian, and Sabine Schulte im Walde. "Distinguishing literal and non-literal usage of German particle verbs." In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies, pp. 353-362. 2016.
- [11] Leong, Chee Wee, Beata Beigman Klebanov, and Ekaterina Shutova. "A report on the 2018 VUA metaphor detection shared task." In Proceedings of the Workshop on Figurative Language Processing, pp. 56-66. 2018.
- [12] Gao, Ge, Eunsol Choi, Yejin Choi, and Luke Zettlemoyer. "Neural metaphor detection in context." arXiv preprint arXiv:1808.09653 (2018).
- [13] Wu, Chuhan, Fangzhao Wu, Yubo Chen, Sixing Wu, Zhigang Yuan, and Yongfeng Huang. "Neural metaphor detecting with CNN-LSTM model." In Proceedings of the workshop on figurative language processing, pp. 110-114. 2018.
- [14] Le, Duong, My Thai, and Thien Nguyen. "Multi-task learning for metaphor detection with graph convolutional neural networks and word sense disambiguation." In *Proceedings of the AAAI conference on artificial intelligence*, vol. 34, no. 05, pp. 8139-8146. 2020.
- [15] Rohanian, Omid, Marek Rei, Shiva Taslimipoor, and Le Ha. "Verbal multiword expressions for identification of metaphor." ACL, 2020.
- [16] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532-1543. 2014.
- [17] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. "Deep Contextualized Word Representations." In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. New Orleans, Louisiana: Association for Computational Linguistics, 2018.
- [18] Mao, Rui, Chenghua Lin, and Frank Guerin. "End-to-end sequential metaphor identification inspired by linguistic theories." In Proceedings of the 57th annual meeting of the association for computational linguistics, pp. 3888-3898. 2019.
- [19] Group, Pragglejaz. "MIP: A method for identifying metaphorically used words in discourse." Metaphor and symbol 22, no. 1 (2007): 1-39.
- [20] Wilks, Yorick. "A preferential, pattern-seeking, semantics for natural language inference." Artificial intelligence 6, no. 1 (1975): 53-74.
- [21] Wang, Shun, Yucheng Li, Chenghua Lin, Loïc Barrault, and Frank Guerin. "Metaphor Detection with Effective Context Denoising." *arXiv preprint arXiv:2302.05611* (2023).
- [22] Lin, Zhenxi, Qianli Ma, Jiangyue Yan, and Jieyu Chen. "CATE: A contrastive pre-trained model for metaphor detection with semi-supervised learning." In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 3888-3898. 2021.
- [23] Su, Chuandong, Fumiyo Fukumoto, Xiaoxi Huang, Jiyi Li, Rongbo Wang, and Zhiqun Chen. "DeepMet: A reading comprehension paradigm for token-level metaphor detection." In *Proceedings of the second* workshop on figurative language processing, pp. 30-39. 2020.
- [24] Steen, Gerard, Aletta G. Dorst, J. Berenike Herrmann, Anna Kaal, Tina Krennmayr, and Trijntje Pasma. "A method for linguistic metaphor identification." *Amsterdam: Benjamins* (2010).
- [25] Mohammad, Saif, Ekaterina Shutova, and Peter Turney. "Metaphor as a medium for emotion: An empirical study." In Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 23-33. 2016.
- [26] Kilgarriff, Adam. "Wordnet: An electronic lexical database." (2000): 706-708.
- [27] Birke, Julia, and Anoop Sarkar. "A clustering approach for nearly unsupervised recognition of nonliteral language." In 11th Conference of the European Chapter of the Association for Computational Linguistics, pp. 329-336. 2006.
- [28] Mu, Jesse, Helen Yannakoudakis, and Ekaterina Shutova. "Learning outside the box: Discourse-level features improve metaphor identification." *arXiv preprint arXiv:1904.02246* (2019).
- [29] Hilton, Kelsey, Akbar Siami Namin, and Keith S. Jones. "Metaphor identification in cybersecurity texts: a lightweight linguistic approach." SN Applied Sciences 4, no. 2 (2022): 60.
- [30] Li, Yucheng, Shun Wang, Chenghua Lin, Frank Guerin, and Loïc Barrault. "FrameBERT: Conceptual metaphor detection with frame embedding learning." *arXiv preprint arXiv:2302.04834* (2023).

- [31] Zhang, Shenglong, and Ying Liu. "Metaphor detection via linguistics enhanced Siamese network." In Proceedings of the 29th International Conference on Computational Linguistics, pp. 4149-4159. 2022.
- [32] Aghazadeh, Ehsan, Mohsen Fayyaz, and Yadollah Yaghoobzadeh. "Metaphors in pre-trained language models: Probing and generalization across datasets and languages." arXiv preprint arXiv:2203.14139 (2022).
- [33] Agirre, Eneko, and German Rigau. "Word sense disambiguation using conceptual density." arXiv preprint cmp-lg/9606007 (1996).
- [34] Laba, Yurii, Volodymyr Mudryi, Dmytro Chaplynskyi, Mariana Romanyshyn, and Oles Dobosevych. "Contextual embeddings for Ukrainian: A large language model approach to word sense disambiguation." In Proceedings of the Second Ukrainian Natural Language Processing Workshop (UNLP), pp. 11-19. 2023.