
Flow Field Reconstruction using Optimal
Sensor Placement and Deep Learning
Bhavneet Bali, Mandar Tendolkar
Veermata Jijabai Technological Institute, Mumbai, India
Corresponding author: Bhavneet Bali, Email: brbali_b19@me.vjti.ac.in

Fluid flow reconstruction is a crucial task in engineering, environmental science, and fluid
dynamics. Accurately predicting and understanding fluid flow patterns is essential for op-
timizing processes, designing efficient systems, and mitigating potential risks. Traditional
methods often rely on complex mathematical models and computationally intensive simu-
lations. However, recent advancements in deep learning and neural networks have shown
promising results in tackling this problem. The present work proposes a novel approach to
fluid flow reconstruction using neural networks, aiming to develop an efficient and accu-
rate feed-forward neural network model capable of predicting fluid flow behaviour based
on available data. An artificial neural network (ANN) is used to capture spatial dependen-
cies in fluid flow data, learning to infer underlying flow dynamics. The model’s robustness
and generalization capabilities are ensured by carefully curating the dataset and incorporat-
ing appropriate data augmentation techniques. The results demonstrate the effectiveness of
neural networks in fluid flow reconstruction, with significant improvements in prediction
accuracy and efficiency compared to traditional methods. The ability to reconstruct fluid
flow patterns accurately from limited or incomplete data has the potential to revolution-
ize various industries, enabling more informed decision-making, optimizing processes, and
improving safety measures. This work contributes to the growing body of knowledge in
deep learning for fluid dynamics and offers a promising avenue for further advancements
in predicting and understanding fluid flow behaviour.

Keywords:Artificial Neural Network (ANN), Fluid flow reconstruction, Proper Orthogonal
Decomposition (POD)

2023. In Satyasai Jagannath Nanda & Rajendra Prasad Yadav (eds.), Data Science and
Intelligent Computing Techniques, 499–508. Computing & Intelligent Systems, SCRS,
India. https://doi.org/10.56155/978-81-955020-2-8-46



1 Introduction 

Fluid flow reconstruction is the process of predicting or estimating the behaviour of fluid flow, often 
from limited or incomplete data. It has numerous applications in areas such as aerospace engineering, 
and mechanical engineering. It involves training a neural network to learn the relationship between 
the data and then using the network to make predictions for new data. Fluid flow reconstruction 
techniques can vary depending on the type of flow being analyzed, the available measurement data and 
the desired level of accuracy. Some common techniques include using mathematical models such as 
Navier-Stokes equations, finite element or finite difference methods, and machine learning algorithms. 
The accuracy and reliability of the reconstructed flow field can depend on the quality and quantity of 
measurement data available as well as the chosen reconstruction technique. 
 
An artificial neural network (ANN), also known as a neural network, is a computational model capable 
of processing information to tackle tasks such as classification and regression. It is the component of 
artificial intelligence inspired by the human brain and nervous system. Artificial neurons and the 
coding signals in an ANN are used to simulate the electrical activities of how the nervous system 
communicates. Each artificial neural neuron receives input signals, processes these signals, and 
generates an output signal. A general practice is to sum the weighted inputs, and then feed the sum 
value into a transfer function to judge if the value is qualified to be transferred to another neuron as an 
input. The simplest transfer function is to compare the sum value with the set threshold, while 
nonlinear functions allow more flexibility. 
 
The prime objective of the present work is to develop a feed-forward neuralnetwork to learn the 
relationship between sensor measurements and the reduced-order state of the system. The work 
further aims at data-driven optimization of sensor placement to achieve accurate fluid flow 
reconstruction. 

2 Literature Review 

2.1 Surrogate Modelling 

Surrogate modelling, also known as metamodeling or response surface modelling, is a machine-
learning technique used to approximate and represent complex mathematical or computational 
models. It involves creating a simpler, computationally efficient model, called a surrogate model, that 
acts as a substitute for the original model. This approach is used for tasks like optimization, sensitivity 
analysis, and uncertainty quantification, providing similar outputs but with lower computational costs. 
The surrogate model is constructed using projection-based reduced-order modelling, where the high-
dimensional system is compressed to a low-dimensional system and the dynamics of the low-
dimensional system are modeled[5]. 

2.2 Physics-Guided Machine Learning 

Physics Guided Machine Learning (PGML) is a framework that combines the strengths of physics-
based models and machine learning to improve modelgeneralizability and interpretability. It embeds 
simplified physics-based models into neural network architecture, allowing the network to adhere to 
realistic constraints. PGML is flexible and applicable to various physical systems, incorporating 
physics during training and prediction stages. Despite its limitations, PGML addresseschallenges in 
capturing complex dependencies from data and addressing limitedscientific data and a lack of 
understanding of underlying physical processes. Byinjecting physics-based features into neural 
network layers, PGML provides amodular and generic approach to embed simplified theories or 
physics-based kernels. Overall, PGML has the potential to enhance the performance, interpretability, 
and generalizability of machine learning models in scientific domains, bridging the gap between data-
driven approaches and physical understanding[1, 2]. 

Bhavneet Bali, Mandar Tendolkar

500



2.3 Reduced Order Modelling

Reduced Order Modelling (ROM) focuses on precision in simulations while reducing computational 
effort. It offers accurate and realistic inter
and experiments. ROM uses compression techniques, machine l
efficiently utilize existing models and experimental data. It enables real
design, and overcomes challenges related to licensing, multi
inindustrial settings. Non-intrusive techniques, such as machine learning methods like LSTM and 
statistical approaches like GP modelling, provide effective solutions for optimal sensor placement in 
systems with unknown or insufficient equations, enabling accurate predictions
collection[2, 9]. 

 
2.4 Deep Learning 
 
Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) are deep learning 
models used for complex pattern recognition and prediction tasks. ANN is inspired by 
brain's function and consists of input, hidden, and output layers. CNN, on the other hand, is designed 
for image-related tasks and mimics the connectivity pattern of the human brain's visual processing. 
Both models requirecareful hyperparameter s
and ensure generalization. Techniques like regularization, dropout, ensembling, and early stopping 
can be employed to find optimal hyperparameters.CNN architectures for Kraichnan turbulence involve 
multiple hidden layers, filters, and activation functions. Post
predicted source term for numerical stability before using it in the vorticity transport equation.

 
2.5 Data Set 

We use the NOAA OI SST V2 analysis dataset for 
situ (ship and buoy) and satellite SSTs plus SSTs simulated by the sea
analysis, the satellite data is adjusted for biases using the method of Reynolds and Reynolds and 
Marsico. This dataset consists of the weekly average sea surface temperature on a 1
longitude global grid (180 × 360). The SST dataset exhibits a strong periodic structure due to 
seasonalfluctuations. Despite this seasonal periodicity, complex o
physics in this dataset. This dataset has been used in several recent studies on flow reconstruction, 
geophysical emulation, and dynamic mode decomposition. Here, we use the data from October 1981 to 
December 2000 (1000 snapshots) for building a surrogate model and the data from January 2001 to 
June 2018 (914 snapshots) for comparing the performance of the surrogate model for forecasting.

 

3 Methodology 

Reduced Order Modelling 

Reduced Order Modelling (ROM) focuses on precision in simulations while reducing computational 
effort. It offers accurate and realistic inter-mediate models that bridge the gap between simulations 
and experiments. ROM uses compression techniques, machine learning, and image processing to 
efficiently utilize existing models and experimental data. It enables real-time modelling, facilitates re
design, and overcomes challenges related to licensing, multi-scale considerations, and confidence 

intrusive techniques, such as machine learning methods like LSTM and 
statistical approaches like GP modelling, provide effective solutions for optimal sensor placement in 
systems with unknown or insufficient equations, enabling accurate predictions and efficient data 

Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) are deep learning 
models used for complex pattern recognition and prediction tasks. ANN is inspired by 
brain's function and consists of input, hidden, and output layers. CNN, on the other hand, is designed 

related tasks and mimics the connectivity pattern of the human brain's visual processing. 
Both models requirecareful hyperparameter selection and training procedures to prevent overfitting 
and ensure generalization. Techniques like regularization, dropout, ensembling, and early stopping 
can be employed to find optimal hyperparameters.CNN architectures for Kraichnan turbulence involve 

ltiple hidden layers, filters, and activation functions. Post-processing is applied to the CNN's 
predicted source term for numerical stability before using it in the vorticity transport equation.

We use the NOAA OI SST V2 analysis dataset for building our surrogate model. The analysis uses in 
situ (ship and buoy) and satellite SSTs plus SSTs simulated by the sea-ice cover. Before computing the 
analysis, the satellite data is adjusted for biases using the method of Reynolds and Reynolds and 

ico. This dataset consists of the weekly average sea surface temperature on a 1
longitude global grid (180 × 360). The SST dataset exhibits a strong periodic structure due to 
seasonalfluctuations. Despite this seasonal periodicity, complex ocean dynamics lead to rich flow 
physics in this dataset. This dataset has been used in several recent studies on flow reconstruction, 
geophysical emulation, and dynamic mode decomposition. Here, we use the data from October 1981 to 

shots) for building a surrogate model and the data from January 2001 to 
June 2018 (914 snapshots) for comparing the performance of the surrogate model for forecasting.

 

Figure 1. Algorithm 

Reduced Order Modelling (ROM) focuses on precision in simulations while reducing computational 
mediate models that bridge the gap between simulations 

earning, and image processing to 
time modelling, facilitates re-

scale considerations, and confidence 
intrusive techniques, such as machine learning methods like LSTM and 

statistical approaches like GP modelling, provide effective solutions for optimal sensor placement in 
and efficient data 

Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) are deep learning 
models used for complex pattern recognition and prediction tasks. ANN is inspired by the human 
brain's function and consists of input, hidden, and output layers. CNN, on the other hand, is designed 

related tasks and mimics the connectivity pattern of the human brain's visual processing. 
election and training procedures to prevent overfitting 

and ensure generalization. Techniques like regularization, dropout, ensembling, and early stopping 
can be employed to find optimal hyperparameters.CNN architectures for Kraichnan turbulence involve 

processing is applied to the CNN's 
predicted source term for numerical stability before using it in the vorticity transport equation. 

building our surrogate model. The analysis uses in 
ice cover. Before computing the 

analysis, the satellite data is adjusted for biases using the method of Reynolds and Reynolds and 
ico. This dataset consists of the weekly average sea surface temperature on a 1 ̊ latitude × 1 ̊ 

longitude global grid (180 × 360). The SST dataset exhibits a strong periodic structure due to 
cean dynamics lead to rich flow 

physics in this dataset. This dataset has been used in several recent studies on flow reconstruction, 
geophysical emulation, and dynamic mode decomposition. Here, we use the data from October 1981 to 

shots) for building a surrogate model and the data from January 2001 to 
June 2018 (914 snapshots) for comparing the performance of the surrogate model for forecasting.  

Data Science and Intelligent Computing Techniques

501



3.1 Data Preparation and POD Functions 

POD is used for reduced-order modelling in dynamical systems, as it captures spatial and temporal 
variations of flow fields. PCA, on the other hand, is primarily used for stationary data and cannot 
capture time-dependent behaviour. POD outperforms PCA in fluid mechanics applications, such as 
transitional flow analysis, as demonstrated by [4]. 
 
After initializing some input parameters, the dataset of sea-surface temperature (SST) is loaded which 
is stored in an h5py file, and preprocessing of the dataset is done by reshaping it into a 3D array. 
Specifically, it reshapes the SST data from shape [number of samples, 180*360] to [number of 
samples, 180, 360] by first flipping the data along the vertical axis using ‘np.flipud()’ and then 
reshaping it using, ‘reshape()’ method. All the data points corresponding to the land area (NaN values) 
are removed and only keep the sea surface data points. This is done for all the samples in the dataset. 
The resulting data is stored in the variable `sst_masked`, which has the shape ‘[number_of_points, 
number_of_samples]’. Then the average sea surfacetemperatures and fluctuation of the sea surface 
temperatures are computed for a   certain number of snapshots after which, the POD basis functions 
are computed using the fluctuation data. The number of basis functions retained is set. Relative           
Information Content (RIC) is a measure used to assess the amount of information carried by a 
particular feature or variable in a dataset, relative to the total amount of information in the dataset. 
First, the POD Modal Coefficients and POD BasisFunctions are calculated and split into training and 
test sets. A variable is defined that is of the shape (me,). This variable has to be initialized for every 
value of ‘me’. The random.sample() function takes care of randomness in picking up the sensor 
locations. To make sure we can reproduce the same results we set the random.seed(10). Now that 
random sensors have been chosen, the sst_observations are split into training and test sets with the 
help of sst_fluc and ns_train_rom. We have 1000 samples for training. The input has features equal to 
the me value and the output has 25 values to predict. 
 
The dataset has to be scaled and shuffled before feeding it to the neural network. Scaling the data 
before training a neural network is important to ensure that the model converges faster and more 
reliably, has better performance, is numerically stable, and is less prone to overfitting and shuffling the 
dataset before training a neural network helps to ensure that model is not biased towards specific 
samples or features, and helps to improve its ability to generalize to new data. 

3.2 Model Training and Evaluation 

A function called ‘build_model’ is defined which constructs a neural network model using the Keras 
library. The function begins by creating an empty sequential model using the models.Sequential() 
method from Keras. This model will serve as the base for building the neural network.Next, a dense 
layer with 40 neurons is added to the model, using the activationfunction specified during 
initialization. The input shape is assumed to be a 2D array where the first dimension represents the 
number of samples (or instances) and the second dimension represents the number of features (or 
inputs). 
 
Next, a for loop is used to add the number of dense layers to the model, each with thenumber of 
neurons and the activation function specified during initialization. The loop also adds a final dense 
layer with the number of neurons equal to the number ofoutput classes. 
 
After the loop is complete, the model.compile() method is called to compile the model for training. The 
optimizer argument specifies the optimization algorithm to be used during training, which in this case 
is Adam. The loss argument specifies the lossfunction to be used during training, which in this case is 
Mean Squared Error (MSE). The metrics argument specifies additional metrics to be evaluated during 
training, which in this case is Mean Absolute Error (MAE). Finally, the function returns the 
constructed neural network model which is trained for 500 epochs with a batch size of 16 and 
evaluates the model's performance on a validation set which is 25% of the training set. After training, 

Bhavneet Bali, Mandar Tendolkar

502



the validation Mean Absolute Error (MAE) is recorded and saved. This task is done for different values 
of ‘me’ and corresponding results are stored in a folder for later analysis. 

3.3 Optimization of Sensor Placement 

The optimized split is achieved by performing QR decomposition[7] of the matrix using the qr() 
function from the linalg module of the scipy library. The specific parameters used are 
mode='economic' and pivoting=True. mode='economic' specifies that the function should return only 
the essential parts of the QR decomposition, i.e., the Q and R matrices, rather than the full matrices. 
This can be more memory-efficient for large matrices. pivoting=True specifies that the function should 
use pivoting to improve the numerical stability of the decomposition. Pivoting means that the function 
reorders the rows of the matrix so that the largest diagonal element of R is first, then the next largest, 
and so on. This helps to minimize round-off errors and improve the accuracy of the decomposition. 
 
The output of the function is a tuple (Q, R, pivot): Q is the orthogonal matrix in the QR decomposition 
and has orthonormal columns. R is the upper triangular matrix in the QR decomposition. Pivot is a 
vector of row indices that gives the permutation of the row that was used in the pivoting process. This 
can be used to reconstruct the original order of the rows if needed. First ‘me’ entries of the pivot are 
extracted and stored in a variable. These entries represent the row indices that were selected during 
pivoting, and they correspond to the most important ‘me’ columns of the matrix. 

3.4 Reconstruction of Full State of System 

The reconstructed Sea Surface Temperature (SST) data is obtained using the Proper Orthogonal 
Decomposition (POD) method. The variable `sst_masked` contains the original SST data with some 
missing values that were masked out. The reconstructed data is stored in ‘sst_rec_test’ as a two-
dimensional array with dimensions `(not_nan_array.shape[0], at_test.shape[0])`. The missing values 
are filled with NaNs. 
 
The variable `PHIw` contains the POD basis functions that were computed from the training data 
using the `POD` function. The `PODrec` function is used to compute the reconstructed SST data 
using the test data and the POD basis functions. The variable `sst_avg` contains the average SST 
computed from the training data. 
 
The ground truth data collected from satellite observations is stored in the `ufom` variable. This data 
is used to compute the forecasting error analysis. The reconstructed SST data is reshaped into a three-
dimensional array with dimensions `(sst_rec_test.shape[1], lat.shape[1], lon.shape[1])` using a loop 
over each time step `k` in `sst_rec_test`. Finally, the resulting three-dimensional array is stored in 
the `utest` variable.  
 
To reconstruct predicted fluid flow fields using a POD-based model trained using deep learning first, 
the predicted coefficients of the POD basis functions are transformed back to the original scale of the 
data by multiplying by the standard deviation and adding the mean value. Then, the reconstructed 
fluid flow fields are obtained by applying the inverse POD transformation to the predicted coefficients. 
This is done using the `PODrec` function with the predicted coefficients `at_pred` and the POD basis 
functions `PHEw`.Finally, the reconstructed fluid flow fields are reshaped into a 3D array with 
dimensions corresponding to the latitude, longitude, and time axes. The reshaping is done using a for 
loop to iterate over the time dimension and reshape each time step using the `reshape` function. The 
resulting 3D array is stored in the variable `upred`. 

Data Science and Intelligent Computing Techniques

503



4 Results and Discussions

4.1 Getting The Best Model For me = 10

Random Sensor Placement 
Absolute Error (MAE) is plotted against Epochs for two activation functions, namely ‘Relu’ and ‘Tanh’. 
The minimum MAE value of 0.657 is o
function as hyperparameters. 

Figure 2. MAE comparison for Random Sensor Placement (me = 10)

Optimal Sensor Placement For Optimal Sensor Placement
plot is plotted. It is observed that a minimum MAE of 0.499, occurs for the model with 6 Layers and 
the ‘Relu’ activation function as hyperparameters. An improvement is observed after the optimization 
of the sensor placements. 
 

Figure 3. MAE comparison for 

4.2 Reconstruction of the Full State of the System

After obtaining the best parameters for each model, it is better to visualize the bigger picture with all 
the models compared side by side. Two important differences are visible by 
observed that as the number of sensor observations increases, the MAE value starts to come down 
significantly in the case of Random Sensor Placement, but the effect of change in the number of sensor 
observations is not as significant in 
 
Also, optimisation of sensor placement leads to reaching a lower MAE faster ascompared to Random 
Sensor Placement. Furthermore, when 25 POD ModalCoefficients are chosen to retain, more than 96% 
of the information is preserved. A brief comparison is given below in Fig

and Discussions 

Getting The Best Model For me = 10 

 Starting with Random Sensor Placement (Figure 2)
Absolute Error (MAE) is plotted against Epochs for two activation functions, namely ‘Relu’ and ‘Tanh’. 
The minimum MAE value of 0.657 is observed for the model with 4 Layers and the ‘Tanh’ activation 

MAE comparison for Random Sensor Placement (me = 10) 

For Optimal Sensor Placement (Figure 3), the same MAE 
otted. It is observed that a minimum MAE of 0.499, occurs for the model with 6 Layers and 

the ‘Relu’ activation function as hyperparameters. An improvement is observed after the optimization 

MAE comparison for Optimal Sensor Placement (me = 10) 

Reconstruction of the Full State of the System 

After obtaining the best parameters for each model, it is better to visualize the bigger picture with all 
the models compared side by side. Two important differences are visible by looking at Fig
observed that as the number of sensor observations increases, the MAE value starts to come down 
significantly in the case of Random Sensor Placement, but the effect of change in the number of sensor 

cant in the case of Optimal Sensor Placement. 

Also, optimisation of sensor placement leads to reaching a lower MAE faster ascompared to Random 
Sensor Placement. Furthermore, when 25 POD ModalCoefficients are chosen to retain, more than 96% 

ion is preserved. A brief comparison is given below in Figure 5. The data is projected 

(Figure 2), the Mean 
Absolute Error (MAE) is plotted against Epochs for two activation functions, namely ‘Relu’ and ‘Tanh’. 

bserved for the model with 4 Layers and the ‘Tanh’ activation 

 

, the same MAE vs. Epochs 
otted. It is observed that a minimum MAE of 0.499, occurs for the model with 6 Layers and 

the ‘Relu’ activation function as hyperparameters. An improvement is observed after the optimization 

 

After obtaining the best parameters for each model, it is better to visualize the bigger picture with all 
looking at Figure 4. It is 

observed that as the number of sensor observations increases, the MAE value starts to come down 
significantly in the case of Random Sensor Placement, but the effect of change in the number of sensor 

Also, optimisation of sensor placement leads to reaching a lower MAE faster ascompared to Random 
Sensor Placement. Furthermore, when 25 POD ModalCoefficients are chosen to retain, more than 96% 

5. The data is projected 

Bhavneet Bali, Mandar Tendolkar

504



onto thepre-calculated POD Basis Function to produce a reconstruction after the inputparameters are 
established. It is plotted next to the True Data representation for b

Figure 4.

Figure 5. Ground truth data collected from satellite observations (FOM) alongside True projection of data onto 
pre

calculated POD Basis Function to produce a reconstruction after the inputparameters are 
established. It is plotted next to the True Data representation for better comparison 

Figure 4. MAE Comparison of all the models 

 

Ground truth data collected from satellite observations (FOM) alongside True projection of data onto 
pre-computed POD Basis Function (True) 

calculated POD Basis Function to produce a reconstruction after the inputparameters are 

 

 

Ground truth data collected from satellite observations (FOM) alongside True projection of data onto 

Data Science and Intelligent Computing Techniques

505



4.3 Reconstruction of the Full State of the 
Coefficients 

Figure 6.Correlation plot between true and predicted coefficients for Random Sensor Placement (me = 10)

Figure7. Correlation plot between true and predicted coefficients for Optimal Sensor Placement (me = 10)

A correlation plot is plotted to examine relationships between preserved modalcoefficients
and Figure 7). The correlation declines for Random Sensor Placement after the first modal coefficient 
but remains somewhat constant for Optimal Sensor Place
There is little substantial association between the two. The probability density function for predicted 
values shows a similar shape (Figure 8)
range in Optimal Sensor Placement.

Figure8. Error comparison between Random and optimal Sensor Placement (me = 10)

Reconstruction of the Full State of the System Using Predicted Modal 

Correlation plot between true and predicted coefficients for Random Sensor Placement (me = 10)

Correlation plot between true and predicted coefficients for Optimal Sensor Placement (me = 10)

correlation plot is plotted to examine relationships between preserved modalcoefficients
. The correlation declines for Random Sensor Placement after the first modal coefficient 

but remains somewhat constant for Optimal Sensor Placement up to the second modal coefficient. 
There is little substantial association between the two. The probability density function for predicted 

(Figure 8), but the improvement achieved by optimizing lowers the error 
ptimal Sensor Placement. 

Error comparison between Random and optimal Sensor Placement (me = 10)

System Using Predicted Modal 

 

Correlation plot between true and predicted coefficients for Random Sensor Placement (me = 10) 

 

Correlation plot between true and predicted coefficients for Optimal Sensor Placement (me = 10) 

correlation plot is plotted to examine relationships between preserved modalcoefficients (Figure 6 
. The correlation declines for Random Sensor Placement after the first modal coefficient 

ment up to the second modal coefficient. 
There is little substantial association between the two. The probability density function for predicted 

, but the improvement achieved by optimizing lowers the error 

 

Error comparison between Random and optimal Sensor Placement (me = 10) 

Bhavneet Bali, Mandar Tendolkar

506



 

Figure 9. Reconstruction for Random Sensor Placement and me = 10

 

Figure 10. Reconstruction for Optimal Sensor Placement and me = 10

Concluding Remarks: Optimizing sensor placement significantly reduces errors and accelerates 
MAE convergence to low values. Random sensor placement increases correlation to higher modes, 
while optimal placement results in a weaker correlation to lower modes. However
placement may not be worth the time and computational power, as Random sensor placement is better 
in some cases and the improvement observed after optimizing sensor locations is not significant 
enough to be considered worth the input
demonstrated higher efficiency for optimal

5 Conclusion 

The work aims to develop a neural network to learn sensor measurements and reduced
relationships, enabling data-driven opti
reconstruction. Proper Orthogonal Decomposition (POD) and Deep Neural Networks are employed to 
achieve maximum Relative    Information Content (RIC) with 40 sensor observations.
 
Deep Neural network models for achieving a minimum value of mean absolute error (mae) for random 
sensor placements at different numbers of sensor observations (me) are:

1. 4 layers 40 neurons with activation function ‘tanh’ for me = 10.
2. 8 layers 40 neurons with activation function ‘
3. 8 layers 40 neurons with activation function ‘tanh’ for me = 40.

Reconstruction for Random Sensor Placement and me = 10 

 

Reconstruction for Optimal Sensor Placement and me = 10 

Optimizing sensor placement significantly reduces errors and accelerates 
MAE convergence to low values. Random sensor placement increases correlation to higher modes, 
while optimal placement results in a weaker correlation to lower modes. However, optimizing sensor 
placement may not be worth the time and computational power, as Random sensor placement is better 
in some cases and the improvement observed after optimizing sensor locations is not significant 
enough to be considered worth the input (Figure 9 and Figure 10).The QR pivoting algorithm 

for optimal sensor placement. 

The work aims to develop a neural network to learn sensor measurements and reduced
driven optimization of sensor placement for accurate fluid flow 

reconstruction. Proper Orthogonal Decomposition (POD) and Deep Neural Networks are employed to 
achieve maximum Relative    Information Content (RIC) with 40 sensor observations. 

ls for achieving a minimum value of mean absolute error (mae) for random 
sensor placements at different numbers of sensor observations (me) are: 

4 layers 40 neurons with activation function ‘tanh’ for me = 10. 
8 layers 40 neurons with activation function ‘tanh’ for me = 20. 
8 layers 40 neurons with activation function ‘tanh’ for me = 40. 

 

 

Optimizing sensor placement significantly reduces errors and accelerates 
MAE convergence to low values. Random sensor placement increases correlation to higher modes, 

, optimizing sensor 
placement may not be worth the time and computational power, as Random sensor placement is better 
in some cases and the improvement observed after optimizing sensor locations is not significant 

The QR pivoting algorithm 

The work aims to develop a neural network to learn sensor measurements and reduced-order state 
mization of sensor placement for accurate fluid flow 

reconstruction. Proper Orthogonal Decomposition (POD) and Deep Neural Networks are employed to 
 

ls for achieving a minimum value of mean absolute error (mae) for random 

Data Science and Intelligent Computing Techniques

507



 
Deep Neural network models for achieving a minimum value of mean absolute error (mae) for optimal 
sensor placements at different numbers of sensor observations (me) are: 

1. 6 layers 40 neurons with activation function ‘relu’ for me = 10. 
2. 8 layers 40 neurons with activation function ‘tanh’ for me = 20. 
3. 8 layers 40 neurons with activation function ‘tanh’ for me = 40. 

6 Acknowledgement 

The authors would like to acknowledge Dr. Suraj Pawar, ex-research scholar, at Oklahoma State 
University, USA for his immense help at every stage of this work. 

References 

[1] Pawar, S., San, O., Aksoylu, B., Rasheed, A. and Kvamsdal, T., 2021. Physics-guided machine learning using 
simplified theories. Physics of Fluids, 33(1). 

[2] Suraj Pawar, Physics-guided machine learning for turbulence closure and reduced-order modelling, PhD 
Dissertation, Oklahoma State University, USA, 2022 

[3] Pawar, S. and San, O., 2022. Equation‐Free Surrogate Modeling of Geophysical Flows at the Intersection of 
Machine Learning and Data Assimilation. Journal of Advances in Modeling Earth Systems, 14(11), 
p.e2022MS003170. 

[4] Rowley, C.W., 2005. Model reduction for fluids, using balanced proper orthogonal 
decomposition. International Journal of Bifurcation and Chaos, 15(03), pp.997-1013. 

[5] Alexander I. J. Forrester, András Sóbester, Andy J. Keane, Engineering Design viaSurrogate Modelling: A 
Practical Guide, 2008. 

[6] Callaham, Jared L., Kazuki Maeda, and Steven L. Brunton. "Robust flow reconstruction from limited 
measurements via sparse representation." Physical Review Fluids 4, no. 10 (2019): 103907. 

[7] Krause, A., Singh, A. and Guestrin, C., 2008. Near-optimal sensor placements in Gaussian processes: Theory, 
efficient algorithms and empirical studies. Journal of Machine Learning Research, 9(2). 

[8] Berkooz, G., Holmes, P. and Lumley, J.L., 1993. The proper orthogonal decomposition in the analysis of 
turbulent flows. Annual review of fluid mechanics, 25(1), pp.539-575. 

[9] Yu, J., Yan, C. and Guo, M., 2019. Non-intrusive reduced-order modelling for fluid problems: A brief 
review. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace 
Engineering, 233(16), pp.5896-5912. 

Bhavneet Bali, Mandar Tendolkar

508


