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Due to the shortage of nephrologists and the scarcity of diagnostic labs in rural
areas, chronic kidney disease (CKD) has recently emerged as a major health prob-
lem. In order to detect illness from clinical and radiological pictures, automated
diagnostic models are necessary. Previous research on CKD diagnosis has mostly
focused on the independent use of clinical data and CT scans to create Al algo-
rithms. Incorporating clinical data with Computed Tomography (CT) images, this
research seeks to create a Deep Multimodal Fusion approach with a late fusion
mechanism for diagnosis. Clinical data wereused in the tests with CT scans of the
kidney to ensure accuracy. Clinical data and image-extracted features are kept sep-
arate in the proposed model by a process termed late fusion. The model scored
99 accuracy, 98.6 recall, 97.8 precision, and 98.2 F-score, showing that combining
clinical data with the CTD increases diagnosis accuracy to that of a human expert.
An additional method of verification was comparing the proposed system’s results
with those of a human expert. In addition, the findings validate the feasibility of
the proposed approach as a diagnostic aid for chronic kidney disease (CKD) for
medical professionals.
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1. Introduction

The term "Internet of Things" is used to describe a network of interconnected devices that share data
with each other and all of the system's programs. When it comes to the healthcare business and
patients, the Internet of Medical Things (IoMT) becomes a specialized, extended branch of 10T that
incorporates all connected devices used to provide timely assistance [1]. Communication between
devices may occur wirelessly or through wires. The ability to go about daily life while yet receiving
constant health monitoring is one of the biggest benefits of oM T-related remote health monitoring [2].
The size of the modules attached to the body and the need for regular battery replacement or charging
made the conventional remote monitoring techniques look cumbersome to the patients [3]. By
developing small, ultra-low-power sensor devices and lightweight gearbox protocols, the IoMT
revolution is able to address the aforementioned issues and provide viable solutions. Portable patient
monitoring units (PPMUs) in ambulances and residences are used for remote health monitoring [4]. A
decision support system is used in hospitals for real-time monitoring.

Combining data or information from several sources with different formats and structures is known as
"data fusion" [5]. Using the human brain's perceptual system as an example, the notion of data fusion
becomes clearer. Illustration of the human brain's perceptual system The human brain integrates data
from the five senses (sight, sound, smell, taste, and touch) with the findings taken from the memories
of comparable events to produce a coherent picture of the world around it. The application of data
fusion principles to the human body demonstrates the significance of this idea. Not only have
geospatial systems, defense systems, and intelligence services (for a review, see [7]) found the use of the
concept of data fusion and its associated techniques, but so have healthcare settings, where they
provide a basis for developing advanced decision support and smart patient monitoring systems [6].
Both the combination of data (COD) and the combination of interpretation (COI) are common methods
for achieving data fusion [8]. Both methods are explained in more detail below.

First, features from all available data sources are combined and used to construct a single decision
model (i.e., to train a single classifier), as illustrated in Figure 1.
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Figure 1 : Combination of Data (features) Model

The second method, called a combination of interpretation (COI), uses many data sources to construct
independent decision models, the results of which are then combined by a combiner (also known as a
meta-decision model or metaclassifier) to provide a single output. Building ensembles of classifiers
(and in particular the stacking approach) [9] is conceptually related to COL. The basic concept of the
COD model is shown in Figure 2. The curse of dimensionality plagues COD, while COI is shown to be
sub-optimal since it cannot maintain relationships between data from different sources, although both
have their flaws. In order to fix these issues, Lee et al. [10] created a general fusion framework (GFF) in
which COI and COD are seen as two ends of a continuum.
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Figure 2 : Combination of Interpretation

The curse of dimensionality plagues COD, while COI is shown to be sub-optimal since it cannot
maintain relationships between data from different sources, although both have their flaws. In order to
fix these issues, Lee et al. [10] created a general fusion framework (GFF) in which COI and COD are
seen as two ends of a continuum.

Several encouraging investigations have been conducted on the topic of using deep learning models to
automate diagnosis in medical imaging [7—10]. Previous work has shown the feasibility of effective
automated image analysis based on imaging data alone, in contrast to normal clinical practice, which
depends on the interpretation of medical imaging in combination with relevant clinical data to guide a
suitable diagnosis. Accessing relevant background information at the moment of image interpretation
is critical in radiology since making an accurate medical diagnosis on imaging typically relies on pre-
test probability, previous diagnosis, clinical and laboratory data, and previous imaging. Eighty-five
percent of radiologists think that clinical context is critical for understanding imaging studies [14]. The
use of multimodal data fusion for automated clinical outcome prediction and diagnosis has increased
during the last three years.

2. Related Work

The literature discusses the use of COD and COI methods from [5,8-11]. In [8], Lanckriet et al.
provided an illustration of the COD technique by using a support vector machine (SVM) to predict the
function of yeast proteins. Their plan involves using a collection of kernels to merge information on
proteins, their constituent amino acid sequences, and the genes they encode. In [9], K. Kourou et al.
employed machine learning methods used in cancer diagnosis and prediction to create a variety of
classification models informed by the COD strategy. The COI method, as published by Jesneck et al. in
[10], combines radiologist interpretation with objective evidence derived from mammograms and
patient history to arrive at a breast cancer diagnosis. Classifiers were built using techniques from
detection theory. To be more precise, a likelihood ratio-based binary classifier was built for each feature
(resulting in multiple classifiers for a given data source), and their combined results were expressed as
a joint likelihood ratio of the set of decision variables. Finally, a genetic algorithm was used to optimize
the thresholds used in both classification tiers. The notion of ensemble classifiers is discussed in [5],
and it is analogous to COI (in particular the stacking scheme) in that it involves the construction of
many classifiers. The author explains how to build ensemble classifiers and goes into depth on how to
combine the results of individual classifiers. Decision trees, SVMs, and neural networks, including their
ensemble, were used by G. Zorluoglu et al. [11] to develop a model for diagnosing breast cancer.
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Classifiers' individual performances were compared to those of the ensemble classifier, and the latter
was shown to be more accurate.

In [4], the author evaluates the COI and COD by building models for four distinct applications in
biomedical image processing. Atlas-based image segmentation, average image tissue segmentation,
multi-spectral classification, and deformation-based group morphometry are only some of the tasks
that may be performed. Using their adaptability and capacity to provide consistent results, the author
compared the performance of COI and COD utilized in the creation of models for the aforementioned
functions.

Image data (i.e., pathological pictures, radiological images, and camera photos) and non-image data
(i.e., lab test results and clinical data) may be generated from routine clinical visits of a single patient.
To better assist diverse clinical choices (such as illness diagnosis and prognosis [1] [2] [3]), the
heterogeneous data would give varying perspectives on the same patient. Such methods of reaching
decisions, however, might be subjective and qualitative, with significant inter-subject variability [4] [5].
Recent years have seen a proliferation of deep learning-based solutions for multi-modal learning in
medical applications, thanks in large part to the fast development of AI technology. When it comes to
extracting and modeling the complicated interactions between multiple modalities and outcomes,
multi-modal fusion often benefits from deep learning because of the high-level abstraction of complex
phenomena inside high-dimensional data [6] [7]. utilising deep learning techniques, several works have
successfully diagnosed or prognosed utilizing a single modality [8, 9], [10]. Since many clinical
modalities may have varying information (complementary information of a person) and have varying
data formats, fusing the multi-modal data successfully is not a straightforward challenge in method
creation.

Diseases are diagnosed and prognoses are made using the patient's multi-modal data (image and non-
image data). Radiological images, pathological images, and camera images are the several types of
images available[13]. varied imaging data may have varied dimensions (2D, 3D, 4D, etc.), and may be
further categorized as pixel-aligned (can be spatially registered and overlaid) or pixel-not-aligned (the
pixels in distinct pictures do not have a spatial connection). Lab test results, such as tabular data of
demographic traits or free text in lab test reports, are examples of non-image data; other examples
include structured genetic sequences and blood test results[16]. Multi-modal learning is a class of
methods in machine learning that faces significant difficulties due to the variety of such image and non-
image input. For instance, whereas 3D CT/MRI radiological scans give macro-level and geographical
information about a tumor, 2D pathology images reveal micro-level morphology[12]. Clinical decision-
making involves the structured DNA and mRNA sequences, as well as the clinical data and laboratory
test findings, which show the molecular, biological, and chemical properties[17]. In addition, picture
data is often bigger and denser (e.g., millions of pixels), whereas non-image data is sparser and lower
dimensional. In this context, different types of information necessitate fusion methods that are able to
effectively capture the shared and complementary information for rendering better diagnosis and
prognosis, and the heterogeneous formats necessitate different preprocessing and feature extraction
methods (e.g., different dimensions, images, free text, and tabular data)[15].

3. Data

First, we provide a brief overview of the data collection that was analyzed in this research. The
assessment matrix and methods employed will be discussed thereafter. DVR Diagnosis in Hyderabad
provided the data for this analysis. In order to accurately diagnose kidney illness, it is necessary to
collect data from a wide variety of sources. The sections that follow will detail the various types of
information that were collected for this study.
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3.1 Clinical Data

The data set contains the fields, their titles, brief definitions, and data types that make up the Chronic
Kidney Disease dataset. There are a total of 25 characteristics and 400 samples in the dataset. Class is
the area of focus for disease forecasting, and it has been implemented. Eleven are numerical and
fourteen are category, making up the remaining 24 attributes.

3.1.1 Clinical Data Preprocessing:

Pre-processing steps include looking for and eliminating outliers, validating and normalizing noisy
data, and checking for missing values. The patient evaluation reveals several missing or inaccurate
estimates. The planned research endeavor includes the following pre-processing measures to account
for this.

3.1.1.1 Handling of Missing Values

The simplest approach to dealing with missing values is to ignore the records, although this is
impractical for smaller datasets. The data set is checked for missing attribute values as part of the data
production process. By using the statistical technique of mean imputation, we may assess the value of
missing data in numerical systems. When filling up missing values for minor characteristics, the mode
technique is employed.

3.1.1.2 Categorical Encoding of Data

Since most deep learning methods only take numbers as input, the category values must be converted
into numbers. Yes and no are only two examples of the types of things whose attributes are represented
by the binary integers o and 1.

3.1.1.3 Transformation of data

Data transformation refers to the act of changing numbers on a small scale such that one variable does
not dominate the others. Otherwise, regardless of the unit of measurement, the learning methods will
consider larger values to be more advanced and smaller ones to be less advanced. For further
processing, the data modifications adjust the values in the dataset. This study employs a data
normalization technique to improve the precision of deep learning methods. Transformed information
has a standard deviation of 1, a mean of 0, and an intermediate value of -1.

The standardization can be stated as,

Q)]

The above equation denotes the standardized score, the observed value is represented as, the mean is
denoted as, and signifies the standard deviation.

3.1.1.4 Outlier detection

In statistics, outliers are single observations that can't be explained by the rest of the data. The estimate
of experimental variability or signal inaccuracy might generate an outlier. Outliers may skew and
mislead a deep learning algorithm's training data. Longer training times, less reliable output, and
reduced model accuracy are all consequences of outlier inclusion. This study employs an IQR-based
technique to filter out extreme cases before feeding the data into the learning algorithm.
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When a dataset is divided into quartiles, the interquartile range (IQR) may be used as a measure of
variability. The numbers that separate each section are known as the first, second, and third quartiles,
and the formula for determining the interquartile range (IQR) is as follows.

TOR=V;-V, ()

where V3 denotes the middle value in the first half of the ordered data set whereasdenotes the second
half. V1 denotes the median value in the dataset.

3.2 Imaging Data

Computed tomography (CT) scans were used to acquire the imaging data. The collection includes
several different kinds of pictures. The pictures were taken using standard techniques and saved in
DICOM format for uniformity and ease of analysis.

3.2.1 Data Pre-Processing

Extensive preprocessing processes were conducted on the clinical and imaging data to assure quality
and compatibility.

First, the input CT images are class labeled and then pre-processed to remove noise. To restore
integrity to characteristics of an image that have been degraded by noise, a pre-processing technique is
presented for use in noise reduction. In this case, adaptive filtering is used for local denoising of an
image's noise content. One definition of a corrupted picture is one in which by I (x,y), the noise
difference across the whole image is shown byo?, the local mean is provided by, .Approximately apixel
window and local variance window is provided bys3.

4. Feature Extraction and Classification:

4.1 Clinical data
4.1.1 Estimation of Glomerular filtration rate

The GFR is very important in many contexts, including as public health, medical treatment, and
scientific inquiry. Clinical labs play a crucial part in determining GFR and diagnosing chronic renal
disease. Serum creatinine measurement and GFR estimation are advised as the first steps in the GFR
assessment. Here, the filtration rate is determined using age and serum creatinine (SC) level, and the
GFR is used to categorize the five phases of CK illness.

4.1.2 Classification:
Graph neural network with deep Q learning technique:

GNNs are the framework together the node dependency in graphs through the passing of messages
between the nodes. The GNN performs on the graph to describe the data from its neighborhood with
random stages. This creates GNN as an appropriate tool to utilize for wireless networks that hold
compound features that cannot be taken in a closed form. In the proposed research work, the GNN-
based approach in accordance w The Q-function is learned from the cell and entity placement instances
through a deep Q-learning approach. The major merit of the Q- function is to establish GNN scalable
over various sizes that can gather limited network features with different numbers of cells and entities.
To generate the optimal selection, the right Q function has to be learned. When the Q function is
gathered through GNN, this renders to learn the GNN parameters which is done by sequential
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accumulation of new cell entity connections over partly connected graph. with the relationship of cells
and entities between the nodes.

4.2 Image Data
4.2.1 Feature extraction using fusion model

Here, pre-processed CT scans have been fed into VGGNet-16 and Inception v4 feature extractors for the
purposes of COVID-19 prediction and classification, respectively. The classifier receives a combined set
of extracted characteristics from these models.

The convolutional neural network (CNN) model uses a series of convolution layers to identify
preexisting picture patterns. CNN's strength is in its ability to train an extremely deep network with
just a small number of parameters. It makes the training process easier and takes less time. The CNN
also has many levels, such as the convolutional layer, the activation layer, the pooling layer, the Fully
Connected layer, and the SoftMax layer.

VGGNet-16 model: In 2014, the Oxford Visual Geometry Group introduced VGG-16, a popular CNN
technique with 16 layers that has shown standard results across a variety of image processing
applications (Xu et al., 2019). When increasing a system's depth, VGG16 swaps out large convolution
filters for small ones. The improvement in classification accuracy is mostly attributable to CNNs with
very small filters. Front-layers of the pre-trained CNN methodology are an applicable low-level
universal feature that is suited for normal image processing applications, and the VGG-16 CNN method
used in this work was pre-trained on the ImageNet dataset. New version of the Inception algorithm.
Inceptions are utilised throughout several training stages to break up repetitive blocks into smaller
networks more suited to displaying a whole model in memory. Therefore, Inception modules are simply
tweaked, representing the potential of altering the number of filters from exclusive layers, without
affecting the preeminence of the trained network. The training time may be reduced by fine-tuning the
layer size to strike a balance between the various sub-networks. The newest Inception models were
developed using TensorFlow, and unlike previous models, they do not include any redundant
segmentation. This may be due to the fact that activating tensors, which play a crucial role in
calculating gradient and approximating bounded values, is a function of contemporary memory
optimisation for Back Propagation (BP). Furthermore, inception-v4 is planned to remove duplicated
work across all grid sizes for Inception blocks (Shankar et al., 2020).

Residual inception blocks: The filter-expansion layer, which is used to increase the filter bank's
dimensionality, applied inception blocks in this model before calculating the input depth. Important for
making up for the reduction in dimension necessitated by the Inception block. Inception-v4 is mild
because to the inclusion of several levels, and it is only one of many Inception variants. The
supplementary shift between residual and non-residual forms of change. For typical layers, we make
use of something called Batch Normalisation (BN). Since the BN model in TensorFlow uses more
memory, it's important to restrict its use to certain situations and reduce the total number of layers.

Scaling of the residuals: Here, if the number of filters is more than 1000, the network is terminated
during the first stage of training, which is the destination layer before the pooling layer activates to
construct zeros from different iterations, since residual techniques reveal its instability. As a result,
restricting training methods won't be enough to get rid of it. The learning method is also confirmed to
be effective when the constrained measurements added before the activation layer are used.
Accumulated layer activations are typically scaled using factors between 0.1 and 0.3.
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4.2.2 Classification:

The suggested ensemble deep learning model that makes use of the Internet of Things is illustrated
below in stepwise. In the beginning, medical IoT devices get the necessary scan of a patient at a nearby
medical facility. After a scan is completed, it is sent to the IoT framework's storage layer over a
communication medium. The resulting scan is then processed using the ensemble deep learning model.
Once the results have been received, they are saved in the database. Medical specialists, physicians, and
patients are just some of the IoT users who may have access to data stored in the cloud. Figure 3 depicts
the suggested ensemble deep learning model. It makes it quite apparent that we'll be training the pre-
trained models independently at first. The final ensembled framework for automated screening of CKD
suspicious instances is obtained by a majority vote. The remainder of this article will focus on the
sequential ensemble model.

1 Initially, the abdomen CT dataset is obtained
Divide the dataset into training and testing fractions,
i.e., 65% and 35%, respectively.

3 Mathematically, each set is defined as

[CuCy] =T, (Dy). 0

Here, Cyrepresents the training set of CT scans, Ci shows the testing set, Tds the 10-fold cross-

validation, and DS is the collected four-class CT scan dataset.

4 The deep learning models, i.e., ResNet152V2, DenseNet201, and IRNV2 are applied on the
testingdataset (Cys) as

Rs= TL(R, S),
Ds=Twu(D, S), (@)
Is= T, S).

Here, RS, DS, and IS show the softmaxfunctions of ResNet152V2, DenseNet201, and
IRNV2,respectively, TL represents the deep transfer leaningmodel, R, D, and I demonstrate the
ResNet152V2,DenseNet201, and IRNV2, respectively, and S showsthe softmax function.

5 The trained individual deep transfer learning models can be defined as
Rs= Mg(Rs, Cu),
Ds = M3(Ds, Cu), 3)

Is = Mg(Is, Cu)

6 Here, MB defines the model-building process.Finally, ensembling is achieved by using
majorityvoting as

Ec= Em(Rs, Ds, Is) 4)

Here, EC is the trained ensemble diagnostic model. EM defines the majority voting ensemble model.

4.3 Fusion Methodology

In order to improve the precision and reliability of kidney disease detection, the fusion technique used
in this study combines clinical and imaging data in a complementary fashion. The fusion methods and
algorithms explored in this study are outlined below.
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4.3.1 Decision-Level Fusion

Combining the predictions or choices generated by separate models trained on clinical and imaging
data is the subject of decision-level fusion. Using methods of ensemble learning including majority
voting and weighted average, this study fuses individual decisions. The final determination is based on
the combined predictions of many classification models that were trained independently on clinical
data and imaging data. Combining these verdicts strengthens the renal disease detection method by
compensating for the shortcomings of individual models.

When combining the results of many models or modalities into a single conclusion, "max voting" is a
strategy that favors the model or modality with the most votes or the greatest confidence score.
Ensemble learning and the merger of several classifiers use this straightforward and instinctive
method. To get a consensus, max voting takes into account predictions from several models or
modalities and then chooses the forecast with the most votes. Multiple classes may be tied, in which
case many methods exist for breaking the tie, such as choosing the class with the greatest average
confidence or using a priority order for the classes. Max voting's merits are its simplicity, robustness,
and readability. Equal weighting, a lack of uncertainty estimates, and how ties are handled are just a
few of the concerns and constraints that must be taken into account while using max voting.

In cases when the models or modalities have comparable performance and no substantial variances in
their expertise, max voting may be an effective decision-level fusion strategy. However, before using
max voting or any other fusion approach, it is crucial to analyse the unique features of the issue, the
performance of individual models, and the desired qualities of the integrated system.
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Figure 3. MultiModal Deep Fusion binary classification model for CKD

5. Results

The CPU requirement for augmentation and classification jobs is Intel i7-9700F with 16GB of RAM,
and the models have been trained on NVIDIA GeForce RTX-2060 SUPPER with 8GB of memory.
Python 3.8.5 and the Tensorflow 2.5 package for DL models are used to implement the research.
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Figure 4. Confusion matrix

Table1. Metrics of performance

Models Performance outcomes (%)

Accuracy | Fiscore | Recall Precision
GNN-DQL 99.93 99.86 99.86 | 99.86
(Clinical Data)
Ensemble Model | 98.05 08.24 98.05 | 98.43
(Image Data)

The figure 4 is the confusion matrix of the multi-classification and the performance metrics are
calculated with the displayed data in the confusion matrix. The performance metrics are calculated
separately for clinical data model and image data model as shown in the table 1, and then the
decisions are interleaved to attain the complete prediction.

Table 2. Benchmarking with Human expert

Evaluation Human Expert Proposed Model
Factors

Accuracy 0.960 0.960

Recall 1.000 0.917
Precision 0.923 1.000

F-1 Score 0.960 0.957

6. Conclusions

Table 2 shows that when clinical data is combined with the CTD, the system outperforms a human
expert in making diagnoses. The suggested system will not be able to diagnose CKD on its own, but it
will help physicians in countries where it is difficult to get medical professionals. Despite the fact that
the suggested approach has yielded very substantial outcomes. There are flaws in the research as well.
The validation was carried out on a sample size of 250 patients since only one expert was available and
a significant number of patient data were not available.
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