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The study of causal relations has been proved to be significant in acquisition, under-
standing, and representation of human knowledge across physical and biological
sciences, engineering, social sciences, economics. Identifying or inferring causal re-
lations from empirical data is a crucial step in knowledge acquisition. For study of
causality, time is an important factor, as the effect will always occur after its cause,
and, often, within stipulated amount of time. Thus, time-series data is considered
ideal for causal inference. In this chapter we review various notions of causality
in time-series data. Granger Causality is the most widely used notion for extrac-
tion of causal relations from time-series data, and has been extended to non-linear,
conditional and multivariate scenarios. We also review some of the other notions
of causality like Dynamic Bayesian network and Mutual Information related causal
extraction techniques. We briefly touch upon Sir Austin Bradford Hill’s criteria
for causality, which puts forward nine viewpoints for concluding an association
relation into causality. Some applications of causality and a list of software tools
are also provided. The chapter will provide sufficient information for the readers
looking for a quick introduction to the field.
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1 Introduction

Much data in physical, biological, engineering, economics and social sciences
comes in the form of time-series (TS). As one example, a blast furnace instru-
mented with various sensors generates a multivariate TS (MVTS) during its op-
eration sessions. As another example, each server in a data center generates a
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MVTS, as its CPU, disk and memory utilization levels are recorded by a monitor-
ing program every second. Or, weekly advertising expenditure and sales revenue
results in a TS. An important question in the analysis of TS data is: Given two
TS, is there any causal relation between them? For instance, does increasing sales
expenditure cause sales revenue to increase? To answer this question, one must
formalize the notion of causality between TS in the statistical framework i.e.,
what it means to say that one TS “causes” another.

TS causality is an active area of research and several notions have been ex-
plored in the literature. For an excellent survey of statistical notions of causality
in a non-time-series setting, see [1]. For other reviews of TS causality techniques,
see [2], [3]. In this paper, we review some of the prominent approaches that
have been proposed to formalize TS causality, without attempting to be compre-
hensive. We also briefly discuss some examples of practical applications of TS
causality.

The paper is organized as follows. Section 2 explains the basic notion of Granger
causality and some of the ways in which it has been extended. Section 3 explains
other notions of causality in time series. Section 4 gives information of various
software tools in R for computation of causality.

2 Granger Causality

2.1 Linear Granger Causality

Interdependence between two TS can be computed using cross-correlation (in
time domain) or coherence (in frequency domain). However, neither captures
any causal relationship between two TS. Granger devised one way to capture TS
causality [4]: a TS 𝑌 causes another TS 𝑋 if using 𝑌 (along with 𝑋 ) allows us to
build a more accurate prediction model for 𝑋 , than the one using only 𝑋 . To use
the Wald Test, for some given lag 𝑝, one can build an autoregressive (AR) model
for a univariate TS 𝑋 with and without another univariate TS 𝑌 , and check if the
former model is more accurate than the latter: X𝑡 = 𝛽0+𝛽1𝑋𝑡−1+…+𝛽𝑝𝑋𝑡−𝑝 +𝜖𝑡
𝑋𝑡 = 𝛼0 + 𝛼1𝑋𝑡−1 +…+ 𝛼𝑝𝑋𝑡−𝑝 + 𝛾1𝑌𝑡−1 +…+ 𝛾𝑝𝑌𝑡−𝑝 + 𝛿𝑡 Eq. 2.1a denotes the re-
stricted model and Eq. 2.1b denotes the full model. The terms 𝜖𝑡 and 𝛿𝑡 are normally
distributed white noise with mean zero and variances 𝜎2𝑅 and 𝜎2𝑈 respectively. Co-
efficients in both the models can be estimated using the numeric data values in
the TS 𝑋 and 𝑌 . The Residual Sum of Squares (RSS) values for these models, 𝑅𝑆𝑆𝑅
(Eq. 1) and 𝑅𝑆𝑆𝑈 , give their respective predictive accuracy. Now use the 𝐹 -test to
check if the full model has better accuracy than the restricted model. Compute
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the 𝐹 -value as follows:

𝐹 = (𝑅𝑆𝑆𝑓 𝑢𝑙𝑙 − 𝑅𝑆𝑆𝑟𝑒𝑠𝑡𝑟 𝑖𝑐𝑡𝑒𝑑 )/𝑝
𝑅𝑆𝑆𝑓 𝑢𝑙𝑙/(𝑛 − 2𝑝 − 1) (64.1)

Here, 𝑛 denotes the total number of elements in TS 𝑋 (we assume |𝑋 | = |𝑌 |)
and 𝑝 is the lag value. Next, compare this computed 𝐹 -value to the critical value
𝐹∗𝛼,𝑝,(𝑛−2𝑝−1) of the 𝐹 -distribution with 𝑝 degrees of freedom (DoF) in numerator
and (𝑛 − 2𝑝 − 1) DoF in the denominator (this value is obtained from tables).
Here, 𝛼 is the level of significance; typically, 𝛼 = 0.05. If computed 𝐹 -value >
𝐹∗ then we reject the null hypothesis 𝐻0 (both models have the same accuracy)
and accept the alternative hypothesis 𝐻1 that adding 𝑝 lag values of 𝑌 to the AR
model improves prediction accuracy of 𝑋 i.e., 𝑌 Granger-causes 𝑋 . In general,
we may have to try different lag (𝑝) values, and we say 𝑌 Granger-causes 𝑋 if this
statement is true for at least one lag value. We have tacitly assumed that 𝑋 and
𝑌 have the same sampling rate. If this is not the case, then one possibility is to
re-sample both the time-series to have the same timestamps. Note that Granger
causality is directed. An equivalent definition is that TS 𝑌 Granger causes TS 𝑋
if the estimated variance �̂�2𝑅 of the residuals (i.e., prediction errors) of 𝑋 in the
restricted model is more than the estimated variance �̂�2𝑈 in the residuals of 𝑋 in

the full model (i.e., 𝑙𝑛( |�̂�𝑈 ||�̂�𝑅 |
) > 0) in some well-defined statistical sense.

We need to check some conditions on TS 𝑋, 𝑌 , before we apply any Granger
causality test to check if 𝑌 Granger-causes 𝑋 . Informally, a TS is integrated with
order 0, denoted 𝐼 (0), if its auto-covariance “quickly” decays to 0. If TS 𝑋 , 𝑌 are
both 𝐼 (0) (or at least stationary) then a Granger causality test can be applied to
check if one TS Granger-causes another TS. Statistical tests, such as Augmented
Dicky-Fuller (ADF) test, can check whether or not the given time-series is sta-
tionary.

If TS 𝑋 is not stationary, then we can construct a new TS by using first differ-
ence: 𝑍𝑡 = 𝑋𝑡+1 − 𝑋𝑡 , for every 1 ≤ 𝑡 < |𝑋 |, and then test 𝑍 for stationarity. If 𝑍
is stationary then 𝑋 is called integrated with order 1 (denoted 𝐼 (1)). Suppose we
are given two time-series 𝑋 and 𝑌 . Suppose you are able to find a constant value
𝛽 such that 𝑌𝑡 − 𝛽𝑋𝑡 is relatively constant, for every 1 ≤ 𝑡 < |𝑋 |, i.e., this new
time-series is stationary 𝐼 (0). Then 𝑋 and 𝑌 are said to be co-integrated. There
are statistical tests, such as Engle-Granger test or Johansen test - which check
whether the given two time-series are co-integrated. If 𝑋 (or 𝑌 ) is not 𝐼 (0) (or
stationary), then we can still test them for Granger causality if 𝑋 is 𝐼 (1) (or 𝑌 is
𝐼 (1)), or 𝑋, 𝑌 are co-integrated.
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This notion of Granger causality has several limitations. First, it is a linear
notion. Second, it is seriously affected by confounding; when 𝑋 and 𝑌 are both
affected by a third process, it may not yield correct results. Finally, it applies only
to pairs of variables; in general, we need multi-variate extensions of Granger
causality.

2.2 Non-Linear Granger Causality

Linear Granger causality is unable to detect causal relations if they are non-
linear; see [5] for an example. We summarize the statistical test given by Baek
and Brock [6] for testing whether a TS 𝑌 non-linearly Granger causes another
TS 𝑋 . We assume that 𝑋 , 𝑌 are strictly stationary, weakly dependent (i.e., 𝐼 (0))
and satisfy some “mixing” conditions given in [7]. Let 𝐿,𝑀 ≥ 1 denote given
lag values for TS 𝑋 and 𝑌 respectively, and let 𝑚 denote the given lead value
for 𝑋 . For example, if 𝑚 = 3, then the lead vector for 𝑋 at time index 𝑡 is
𝑋𝑚𝑡 = (𝑥𝑡+1, 𝑥𝑡+2, 𝑥𝑡+3). Similarly, the lag vectors are: 𝑥𝐿𝑡−𝐿 = (𝑥𝑡−𝐿, 𝑥𝑡−𝐿+1, … , 𝑥𝑡−1)
and 𝑦𝑀𝑡−𝑀 = (𝑦𝑡−𝑀 , 𝑦𝑡−𝑀+1, … , 𝑦𝑡−1). The null hypothesis 𝐻0 is that 𝑌 does not
non-linearly Granger cause 𝑋 . The test procedure first fits a full linear model (us-
ing 𝐿 lag values of 𝑋 and𝑀 lag values of 𝑌 ) to the data, and obtains the residuals
for 𝑋 i.e., difference between predicted and actual values of 𝑋 . Similarly for 𝑌 .
Any remaining predictive power of these residuals time-series can be considered
as non-linear causal relation [6]. We now summarize the statistical hypothesis
test developed by Baek and Brock [6] for this purpose.

Let 𝜖 > 0 be a given small positive number. Let 𝑡 , 𝑠 be any two time indexes.
Quantities 𝐶1, 𝐶2, 𝐶3, 𝐶4 are defined as below. 𝐶1 is the joint probability that (i)
the distance between lag vectors 𝑋𝑚+𝐿𝑡−𝐿 and 𝑋𝑚+𝐿𝑠−𝐿 at time indexes 𝑡 and 𝑠 is < 𝜖;
as well as (ii) the distance between lag vectors𝑌𝑀𝑡−𝑀 and 𝑌𝑀𝑠−𝑀 at time indexes 𝑡
and 𝑠 is < 𝜖. ‖ ⋅ ‖ denotes distance, for which the 𝑚𝑎𝑥 norm is used. 𝐶2, 𝐶3, 𝐶4 are
understood similarly. C1(m+L, M, �) = Pr(‖X𝑚+𝐿𝑡−𝐿 −𝑋𝑚+𝐿𝑠−𝐿 ‖ < 𝜖, ‖𝑌𝑀𝑡−𝑀−𝑌𝑀𝑠−𝑀 ‖ < 𝜖)
𝐶2(𝐿,𝑀, 𝜖) = Pr(‖𝑋𝐿𝑡−𝐿 − 𝑋𝐿𝑠−𝐿‖ < 𝜖, ‖𝑌𝑀𝑡−𝑀 − 𝑌𝑀𝑠−𝑀 ‖ < 𝜖)
𝐶3(𝑚 + 𝐿, 𝜖) = Pr(‖𝑋𝑚+𝐿𝑡−𝐿 − 𝑋𝑚+𝐿𝑠−𝐿 ‖ < 𝜖)
𝐶4(𝐿, 𝜖) = Pr(‖𝑋𝐿𝑡−𝐿 − 𝑋𝐿𝑠−𝐿‖ < 𝜖) Then [6] gives correlation integral based esti-
mators 𝐶1, 𝐶2, 𝐶3, 𝐶4 for the above quantities, which can be computed from the
actual realizations of the TS 𝑋 and 𝑌 . They show that under the null hypothesis
and other conditions on 𝑋, 𝑌 given above, the test statistic given on the left fol-
lows the Normal distribution with mean 0 and variance 𝜎2 (which depends on
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𝑚, 𝐿,𝑀, 𝜖):
√𝑛 (

𝐶1
𝐶2 − 𝐶3

𝐶4) ∼ 𝑁(0, 𝜎2) (64.2)

They give an estimator for 𝜎2 that can be computed from the data. Here, 𝑛 =
𝑛0+1−𝑚−𝑚𝑎𝑥(𝐿,𝑀) and 𝑛0 is the length of the given realization of time-series𝑋
(and 𝑌 ). The hypothesis test procedure now simply computes the value of the test
statistic from given data and if it is more than the critical value obtained from the
Normal distribution on the right side (for, the significance level of, say, 0.05), then
𝐻0 is rejected and the alternative hypothesis that 𝑌 non-linear Granger causes 𝑋
is accepted. Amodified form of this Baek and Brock test is given by Hiemstra and
Jones [8], where they have given a better estimator for 𝜎2. Note that the choice
of values for lags 𝐿,𝑀 , lead 𝑚 and 𝜖 are important.

2.3 Conditional Granger Causality

As discussed, the Granger causality notion detects a direct causal relation be-
tween two time-series. Suppose a univariate TS 𝑌 Granger causes a univariate
TS 𝑋 . In some applications, we want to know whether this is a direct causal re-
lation or whether it is entirely due to another “mediating” TS 𝑍 . The notion of
conditional Granger causality (CGC) helps to answer this [9]. First, we form the
restricted model for predicting 𝑋 values using only the 𝑝 lag values of 𝑋 and 𝑌 ,
omitting the lagged values of the mediating TS 𝑍 (for illustration, we use 𝑝 = 2).
Then we form the full model for predicting 𝑋 values using 𝑝 lag values of all
three TS: X𝑡 = 𝛽0 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑍𝑡−1 + 𝛽4𝑍𝑡−2 + 𝜖𝑡
𝑋𝑡 = 𝛼0 + 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + 𝛼3𝑍𝑡−1 + 𝛼4𝑍𝑡−2 + 𝛼5𝑌𝑡−1 + 𝛼6𝑌𝑡−2 + 𝛿𝑡 The terms 𝜖𝑡 and 𝛿𝑡 are
normally distributed white noise with mean zero and variances 𝜎 2𝑅 and 𝜎 2𝑈 respectively.
Coefficients in both the models can be estimated using the numeric data values in the TS
𝑋, 𝑌 , 𝑍 . The 𝑅2 values for these models, 𝑅2

𝑟𝑒𝑠𝑡𝑟 𝑖𝑐𝑡𝑒𝑑 and 𝑅2
𝑓 𝑢𝑙𝑙 , give their respective predic-

tive accuracy. Now, as earlier, we can use the 𝐹 -test to check if the full model has better
accuracy than the restricted model. If computed 𝐹 -value > 𝐹 ∗ (for a given significance
level 𝛼) then we reject the null hypothesis 𝐻0 (both models have the same accuracy) and
accept the alternative hypothesis𝐻1 that the causal relation from TS 𝑌 to TS𝑋 is entirely
mediated by TS 𝑍 .

There are several issues in practice in using this notion of conditional Granger causal-
ity. For example, TS 𝑋, 𝑌 , 𝑍 may be auto-correlated and cross-correlated, which violates
the assumption of independence of observations underlying the Fisher test, and which
often makes the test unreliable in establishing causality; see [10].
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2.4 Multi-variate Granger Causality

Several attempts have been made to extend the notion of Granger causality to deal with
multivariate time-series (MVTS) as these occur frequently in practical applications. Con-
sider an 𝑛-dimensional MVTS X = ⟨x1, … , x𝑁 ⟩, where each x𝑇𝑡 is a column vector of 𝑛
entries. Consider another 𝑚-dimensional MVTS Y = ⟨y1, … , y𝑁 ⟩, where each y𝑇𝑡 is a col-
umn vector of 𝑚 entries. In general, these two MVTS may be dependent on each other
in some way. As earlier, we want to check if using the past values of the MVTS Y along
with past values of X results in a better predictive model for X than the model which
only uses the past values of X.

The equation corresponding to each component of the 𝑋 TS is compactly written in
the matrix notation as follows (this is the full vector auto-regressive (VAR) model):

𝑋𝑡 =
𝑝
∑
𝑘=1

𝐴𝑓
𝑥𝑥,𝑘 ⋅ 𝑋𝑡−𝑘 +

𝑝
∑
𝑘=1

𝐴𝑓
𝑥𝑦,𝑘 ⋅ 𝑌𝑡−𝑘 + �𝑓𝑥,𝑡 (64.3)

Here𝑋𝑡 , 𝑌𝑡 are 𝑛×1 and𝑚×1 column vectors respectively,𝐴𝑓
𝑥𝑥,𝑘 , 𝐴𝑓

𝑥𝑦,𝑘 are the 𝑛×𝑛 and 𝑛×𝑚
coefficient matrices respectively (these are 𝑝 matrices each) and �𝑓𝑥,𝑡 is the 𝑛 × 1 column
vector of residuals. Define the covariance matrix for the residuals of the full model as:
Σ𝑓𝑥𝑥 = 𝑐𝑜𝑣(�𝑓𝑥,𝑡). The restricted VAR model is formulated similarly:

𝑋𝑡 =
𝑝
∑
𝑘=1

𝐴𝑟
𝑥𝑥,𝑘 ⋅ 𝑋𝑡−𝑘 + �𝑟𝑥,𝑡 (64.4)

The covariance matrix for the residuals of the restricted model is defined as: Σ𝑟𝑥𝑥 =
𝑐𝑜𝑣(�𝑟𝑥,𝑡). The null hypothesis that 𝑌 does not causally affect 𝑋 is: 𝐻0 ∶ 𝐴𝑓

𝑥𝑦,1 = … =
𝐴𝑓

𝑥𝑦,𝑝 = 0 i.e., each of the 𝑝 coefficient matrices in the full model is a zero matrix. The
test statistic is the ratio of the determinants of the residual covariance matrices in the
two models:

𝐹𝑌→𝑋 = |Σ𝑟𝑥𝑥 |
|Σ𝑓𝑥𝑥 |

(64.5)

Now the multivariate granger causality from the set of 𝑌 TS to the set of 𝑋 TS can
be tested using the 𝐹 -test as discussed earlier. The model coefficients can be estimated
using actual realizations of 𝑌 and 𝑋 MVTS. MATLAB includes the MVGC toolbox for
multivariate Granger causality inference [11]. This notion of unconditional multivari-
ate Granger causality can be extended to the conditional case. We have discussed the
time-domain formulation, which can also be alternatively and equivalently formulated
in frequency-domain. See also [12], [13].
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2.5 Temporal Causal Modeling with Graphical Granger Methods

Along with the traditional approach of using Granger causality, various extensions have
been proposed and developed to overcome the limitations of canonical way of using
Granger causality. In [14], authors examine some algorithms, falling loosely under the
category of Granger graphical methods and compare their relative performance from
multiple viewpoints. They randomly generate a large number of simulations, in which
target time-series model is generated (mostly VAR), and then examine the performance
of the various methods as a function of different parameters of the simulation. Similar
experiments are performed on actual dataset of Standard & Poor’s Compustat Data1. The
performance of a causal modeling algorithm is measured in terms of similarity between
the hypothesis graph and the actual graph which generated the input data. Few different
approaches along with the canonical approach are described in [14]. The Lasso-Granger
method, applies regression to neighborhood selection problem, to identify the subset of
features on which the particular feature conditionally depends. The best regressor sub-
set will be the one with least squared error, and will have non-zero coefficients. The
SIN Granger method [15] is based on the observation that there is no causal relation be-
tween two variables, 𝑥𝑖 and 𝑥𝑗 when a subset of variables 𝑋𝑠 ∈ 𝑋\{𝑥𝑖, 𝑥𝑗} exists, such that,
𝑥𝑖 and 𝑥𝑗 are independent given 𝑋𝑠 [16], [17]. SIN is based on 𝜌𝑥𝑦.𝑉 , the partial correla-
tion, which is the correlation among variables 𝑥 and 𝑦 given the remaining 𝑉 variables.
The VAR method [18], generalizes the univariate AR to multiple time series. The VAR
estimation method is to invert the coefficient matrix and solve least squared regression
problems. The paper also suggests regularized VAR method for sparse data. According
to [14], the Lasso Granger method provides the advantage of consistency. They apply
the frequently used metrics precision, recall and F1-measure as well as graph structure
for evaluating graph similarity between the generated/ hypothetical causal graph and the
true causal graph. The authors emphasize that, conditions in which different approaches
are most effective need to be analyzed. There is a need to explore different combinations
of existing techniques.

2.6 Grouped Graphical Granger Modeling

In [19], the authors propose a novel enhancement to the graphical Granger methodology,
with the use of regressionmethods, which are sensitive to group information, to leverage
the group structure present in lagged temporal variables. They propose a new family of
algorithms callGroup Boosting. Further, the authors, make an attempt to prove thatGroup
Boosting is equivalent toGroup Lasso for the special case of linearmodel and orthonormal
data. They try to answer the relevant variable selection question; “whether the lagged
variables for a given time-series, as a group (as opposed to individual variable), are to be
included in regression?”. They propose two new algorithms, Group Boosting and Adaptive
Group Boosting for group variable selection. The advantages of group boosting methods
are that, they are computationally inexpensive, can handle non-parametric models and,

1http://www.compustat.com (Accessed Date: 6𝑡ℎ September 2023)
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data of mixed types. The authors suggest to further extend the research in the field
of Graph Boosting algorithms, like exploring interactions with other approaches and,
improving their theoretical guarantee.

2.7 Recent Advances

Granger Causality remains an active area of research (see [20] and [21] for recent re-
views) and continues to be used in novel applications across diverse disciplines. While
the majority of applications of Granger Causality are in economics, physics and engi-
neering, other disciplines have also enthusiastically adopted Granger Causality analysis:
neuroscience [22], politics [23], climatology [24], environment science [25] and so forth.

Despite the successful use of Granger Causality across a wide range of applications,
some concerns remain: scope of its applicability, its strengths and limitations, its reli-
ability in terms of discovering the true causal structures underlying the observed TS
data and possibilities of obtaining spurious causal relations, among others. We will dis-
cuss a few papers that quantitatively demonstrate the limitations of Granger Causality
formalisms.

Standard Granger Causality assumes that the underlying process that generated the
data is linear and stationary. These assumptions are not valid for many real-life pro-
cesses, such as neural spikes, systems with latent variables or continuous-time processes.
Thus, Granger Causality should be used only after such assumptions regarding the gen-
erative process for the observed data (as underlying Granger Causality) are carefully
checked.Wherever possible, the causal relations obtained usingGranger Causality should
be compared with the known functional relations or properties [26]. [27] show that
the spurious Granger Causality may be estimated if one or both TS are non-stationary.
[10] uses simulated data to demonstrate a bias-variance tradeoff in conditional Granger
Causality estimates: using the true order for the ARmodel introduces bias and increasing
the model order reduces bias but increases the variance in model parameters; they show
that this leads to spurious peaks and valleys and even negative values. Standard Granger
Causality requires specifying the lag in the VAR model, which can be a challenge. Penal-
ties like hierarchical lasso have been used to automatically select the relevant lags while
guarding against overfitting.

Scientists are investigating questions of what is the appropriatemethodology to be fol-
lowed when using a particular formulation of Granger Causality; see [28]. Philosophical
foundations of Granger Causality are also being examined; see [29], which argues (using
philosophical reasoning) that causal relations discovered using Granger Causality have
no epistemic utility (i.e., they are meaningless) if the domain knowledge is insufficient
to validate them.

Given the limited expressive power of linear models used in Granger Causality, many
attempts have been made to harnesss artificial neural networks for the purpose of dis-
covering non-linear causal structures in data. [30] proposes modified structured mul-
tilayer perceptron (MLP) and recurrent neural network (RNN) frameworks that detect
non-linear causal relationships while doing automatic lag selection through sparsity-
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inducing penalties on the weights in the neural network; see also [31].
Copula functions are used in quantitative finance to model dependence between ran-

dom variables. By Sklar’s theorem, any multivariate joint distribution can be written in
terms of univariate marginal distribution functions and a copula which describes the
dependence structure between the variables. This theorem allows modeling and estimat-
ing a multivariate joint distribution by estimating marginals and copulas separately. [32]
proposes model the dependence between returns of two financial markets (e.g., US and
Japan stock markets) using a parametric copula and infer Granger Causality by testing
whether the copula function of a pair of two financial markets is the independent copula;
see also [33]. Similar approaches have been used to analyze the cryptocurrency markets.

In [34], the authors take up the task of discovering non-linear directional causal re-
lations. They introduce nonlinear Granger Causality (IsNGC), that extracts conditional
granger causality between two multivariate time-series condition on a large number of
confounding variables. The techniques is developed to find the causal relations in set-
tings where the number of observations (length of the time-series) is small. To reveal
the statistically significant causal relations, the interactions are modeled as nonlinear
state space transformations with no apriori assumptions on functional dependencies.
The functional Magnetic Resonance Imaging (fMRI) data of the brain is used for experi-
mentation in the paper.

Given some time-series data, different causal models can be inferred for different set of
samples, where each set has a different underlying causal graph. However, some relevant
information is shared among this samples, that can be used to predict the effects of these
causal relations as result of shared dynamics between these causal models. In [35], the
authors propose Amortized Causal Discovery framework which infers causal relations
from these shared dynamics. Even though the inferred causal graphs using the technique
are not verifiable and the results are empirical, the paper opens up new directions for
future research work, where shared dynamics could be useful to explain and identify
effects that remain undiscovered using the individual causal models inferred from the
data.

3 Other notions of Causality in Time-series

3.1 Dynamic Bayesian Network

A Bayesian Network (BN)/ Bayesian Belief Network (BBN) is a graphical model, rep-
resented as a Directed Acyclic Graph (DAG), where the nodes in the graph represent
random variables and edges between these nodes represent the causal relations. Each
vertex has a conditional probability table (CPT) that quantifies the effects of parents on
it. Given two variables 𝑋 and 𝑌 , a directed edge from 𝑋 to 𝑌 indicates a causal relation
between the two variables where 𝑋 is the cause and 𝑌 is the effect.

ADynamic Bayesian Network (DBN) is a special case of BNs, aimed at modeling tem-
poral dependencies. The static interpretation of the system in DBNs, that is the nodes,
edges, and probabilities, is identical to that of BNs. In DBN, the variables could be con-
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sidered as state where each time slice could represent a different state of the system. Let
us denote the random variables/ states by uppercase letters, their values by small case
letters, parents of a variable 𝑋 by 𝑃𝑎(𝑋), number of variables by 𝑁 , and time boundary
by 𝑇 respectively. 𝑡 denotes a particular time instance and 𝑋𝑡 denotes the random vari-
able at time slice 𝑡 . In DBN it is conventional to make first order Markov assumption that
the state of the system at time 𝑡 depends only on its immediate past, that is the state at
𝑡 − 1.

DBN consists of probability distribution function on the sequence of 𝑇 hidden state
variables 𝑋 = {𝑥0, 𝑥1, ..., 𝑥𝑇−1} and 𝑇 observation variables 𝑌 = {𝑦0, 𝑦1, ..., 𝑦𝑇−1}. Complete
specification of a DBN needs defining three sets of parameters, 1)State Transition Prob-
ability Distribution Functions (PDFs) 𝑃𝑟(𝑥𝑡 |𝑥𝑡−1) i.e., time dependencies between states,
2) Observation PDFs 𝑃𝑟(𝑦𝑡 |𝑥𝑡) i.e., dependencies of observation nodes on other nodes at
time instance t, and 3) Initial state distribution 𝑃𝑟(𝑥0) i.e., initial PDF at the beginning of
the process [36].

Inference in DBNs

• Probabilistic inference means calculating the probability 𝑃(𝑋 |𝑌 = 𝑦), where 𝑋 is the
set of query variables (states) and 𝑌 is the set of evidence variables (observations). The
joint probability distribution from time 𝑡 = 0 to 𝑡 = 𝑇 is given by:

𝑃(𝑋0∶𝑇 ) = 𝑃(𝑋0)
𝑇

∏
𝑡=0

𝑁
∏
𝑖=1

𝑃(𝑋 𝑖𝑡 |𝑃𝑎(𝑋 𝑖𝑡 )) (64.6)

The above equation is the foundation of all inference algorithms in DBNs [37].
For example of inference in DBN, refer figure 1. The example has three random vari-

ables,𝑋 , 𝑌 and 𝑍 . The values of these variables at time instance 𝑡 are denoted as𝑋𝑡 , 𝑌𝑡 and
𝑍𝑡 respectively. And the values at previous time slice 𝑡−1 are denoted as𝑋𝑡−1, 𝑌𝑡−1 and 𝑍𝑡−1
respectively. As seen from the figure, inside a particular time-slice, the variable 𝑋 causes
𝑌 and 𝑌 causes 𝑍 (shown by black arrows). There are some dependencies present across
time-slices (shown by green arrows). The variable 𝑌 at current time-instance 𝑡 denoted
by 𝑌𝑡 is dependent on variable 𝑋 at previous time-slice 𝑡 − 1, denoted by 𝑋𝑡−1. Similarly
𝑍𝑡 depends on 𝑍𝑡−1. To infer the probability that a variable takes a particular value at
particular time-slice is nothing but just the product of the conditional probabilities of
the parents (the variables on which variable under consideration is dependent) of that
variables as shown in equation 64.6. For example, the 𝑃(𝑌𝑡) = 𝑃(𝑋𝑡)𝑃(𝑋𝑡−1)𝑃(𝑌𝑡 |𝑋𝑡 , 𝑋𝑡−1).
Similarly 𝑃(𝑍𝑡) = 𝑃(𝑋𝑡)𝑃(𝑋𝑡−1)𝑃(𝑌𝑡 |𝑋𝑡 , 𝑋𝑡−1)𝑃(𝑍𝑡−1|𝑌𝑡−1)𝑃(𝑌𝑡−1|𝑋𝑡−1)𝑃(𝑍𝑡 |𝑍𝑡−1, 𝑌𝑡).

For inference task, we need to learn 1) structure of the Bayesian Network and 2) prob-
abilities (the conditional probability distributions).

1. Learning the structure
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Figure 1: Dyanmic Bayesian Network Example

3.1.0.1 • The structure of a Bayesian Network can be learned by searching
through the space of all possible structures and finding out the one which best
describes the input data i.e., we search for the structure which maximizes the
conditional probability 𝑃(𝐷𝑎𝑡𝑎|𝜃, 𝑀) where 𝜃 are the parameters of the distribu-
tion and 𝑀 is the network structure. A scoring metric (e.g. Bayesian Information
Criteria) is used to find the best suitable structure. Smart heuristics are used for
searching through the entire space to avoid combinatorial explosion. Search algo-
rithms like annealing, genetic algorithms. prove useful in such case.

3.1.0.2 • Another approach is to use constraint based algorithm that starts with
a fully connected network and drops the edges, which show conditional indepen-
dence. However, the repeated independence test by dropping the edges may result
in loss of statistical power as effects of some variables will be ignored.

2. Learning the probabilities

3.1.0.3 • Estimating the probabilities for a DBN includes estimating the prob-
abilities 𝑃(𝑋) and the conditional probability 𝑃(𝑋 |𝑌 ). Non-parametric approach,
uses histogram to calculate the probabilities. The other approach, which is para-
metric, assumes some kind of distribution for the data and estimates its parame-
ters in a way, that best describes the probabilities from the input data. Typically
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Gaussian distribution assumption is made and parameters for this assumed distri-
bution are estimated from the data.

3.1.0.4 • The inference procedure searches through the space of all possible structures
of the network, and computes the scoring metric for each, by estimating the probabilities
and choosing the one with the best score. Some other tasks such as learning, decoding
and prediction are also performed in DBNs [36], [38].

DBNs were introduced as a special case of singly connected Bayesian Networks that
are used to represent time-series. They have been widely used to find dynamic relation-
ships between variables in the areas such as bioinformatics, digital forensics, protein
sequencing, network security and speech recognition.

Identifying dynamic relationships between infectious diseases and their related influ-
encing factors is vital for infectious disease monitoring. [39] suggested how the DBNs
can help in finding dynamic relations and improving the quality of infectious diseases
surveillance. The real-world surveillance data of hand, foot, and mouth disease (HFMD)
from Beijing in 2009 was used to represent dynamic relationships between weather fac-
tors (temperature(TEMP), relative humidity(RH), sunshine hours(SH).) and HFMD dis-
eases. The weather-HFMD relationship (i.e., TEMP→ HFMD, RH→ HFMD) can be de-
layed because of the incubation period of infectious disease. Hence, the weekly cases
of HFMD diseases and weekly average temperature and average relative humidity are
considered to discover dynamic causal relations between them.

According to [40], the DBN could be learnt from the VAR model with an effective
model selection procedure. The influence of past 𝑝 observations on the current observa-
tions characterized by VAR(𝑝) model as below,

𝑋𝑡 = 𝜇𝑡 + 𝜙1.𝑋𝑡−1 + .. + 𝜙𝑝 .𝑋𝑡−𝑝 + 𝛼𝑡 (64.7)

where𝑋𝑡 = (𝑋 0𝑡 , 𝑋 1𝑡 , ..𝑋𝑚𝑡 )′ , 𝜇𝑡 = (𝜇0𝑡 , 𝜇1𝑡 ..𝜇𝑚𝑡 )′ is a (𝑚+1) dimension constant vector and
𝛼𝑡 = (𝛼0𝑡 , 𝛼1𝑡 ..𝛼𝑚𝑡 ) is a sequence of independent and identically distributed random vectors
with mean zero and constant covariance matrix. The 𝜙∗𝑖 interpreted as lag-𝑖 (𝑖 = 0, 1, .., 𝑝),
Auto-Regressive coefficient matrix with dimensions (𝑚 + 1) ∗ (𝑚 + 1) which measures
the dynamic dependencies between 𝑋𝑡 and 𝑋𝑡−𝑖.

The performance of DBNs was evaluated by two simulations, 1) The comparison of
DBNs performance with other models such as the Granger causality test and Least Abso-
lute Shrinkage and Selection Operator (LASSO)method 2) To assess how the DBNs could
improve the forecasting ability of infectious diseases. It was observed that desirable sam-
ple size is important in identifying dynamic relations among multiple variables. The true
positive rates (TPR) were higher with a large sample size than the small sample size com-
pared to the other two models. For the second simulation, DBNs are used to identify risk
factors of HFMD disease before building the forecasting model. The true positive rate
for identifying risk factors was 95.48% and that of false positive rates was not more than
5%. The DBNs could reliably and efficiently detect the relationships between infectious
diseases and a number of exogenous factors. This could have a real-world impact by pro-
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viding the Centers for Disease Control and Prevention (CDC) with choosing prominent
influencing factors of current infectious disease.

DBNs have been widely used in Bioinformatics. They are considered a promising
model for inferring gene networks from time-series microarray data. DBNs can han-
dle time delay information and generate cyclic networks since the actual gene networks
feature the cyclic regulatory pathways with feedback loops. In [41], DBNs are used to in-
fer gene networks from the real-world time-series gene data of Saccharomyces cerevisiae.
The data contains 18, 24,17, and 14 time-points with attributes alpha, cdc15, cdc28, and elu.
DBNs use time-series data to form the causal relationship between genes and construct
the gene networks. Although microarray data is continuous and quite noisy, it is dis-
cretized to reduce noise. A discrete DBNmodel is then applied to estimate gene networks.
The Sacccharomyces cerevisiae data is binarized into over-expressed and under-expressed
genes based onwhether the rate of expression was considerably more than or lower than
some threshold. This model has certain flaws, such as the possibility of information loss
due to discretization and the threshold value. The threshold value must be carefully cho-
sen because the estimated networks are reliant on it. Hence the continuous DBN model
is used to derive gene networks and represented as normal density function [41]. The
linear DBN model is formed. However, there is no assurance that linear models will be
able to represent relationships between genes. Therefore, B-splines a non-parametric
regression model designed to discover non-linear causal relations is used. With another
dataset KEGG, the targeted network CDC28 (YBR160w; cyclin-dependent protein kinase)
forms the cyclic pathway of 45 genes. The number of false positive with DBN model is
much smaller than the traditional BN. The efficient and accurate DBN model could help
to infer gene networks. However, it is challenging to understand whole gene networks
with only microarray data.

3.2 Bradford Hill’s Criteria for Causation

The president’s address [42] by Sir Austin Bradford Hill, presented nine viewpoints or
criteria from which an association should be studied to conclude it as a causal relation
(published in the proceeding of the Royal Society of Medicine in 1965). These criteria
when examined together (rather than examining a single criteria), can help to answer
the fundamental question “is there any way of explaining the set of facts together?, is
there any answer equally or more likely than cause and effect?” while evaluating against
an observed association. The nine criteria proposed by Hill are explained one by one as
follows:

• Strength - The strong associations are more likely to be causal than the weaker
associations, because, the strength of the affecting factor must be greater than
the strength of the observed association to conclude into causality. The weaker
associations could be due to bias or confounding. Today, rather than the strength
of the association, the statistical significance is acceptable for causal discovery
[43]. In [44], authors presented statistically significant estimates showing that
employees in jobs with higher potential for flavouring chemical exposures had 2.8
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times greater annual declines in forced expiratory volume (FEV) than employees
in lower exposure jobs. A strong association is neither necessary nor sufficient for
causality, nor is weakness necessary nor sufficient for absence of causality, and
the strong association helps in only ruling out the hypothesis that the association
is due to bias or confounding [45].

• Consistency - Consistency refers to the repeated observation of an association
in different populations under different circumstances. Whether chance explains
a revealed causality or not, can be answered only through repetition of the cir-
cumstances and observations. Consistency in results can justifiably infer that the
association is not due to constant error or fallacy. Lack of consistency, however,
does not rule out a causal association, because some effects are produced by their
causes only under unusual circumstances. For example, Transfusion can cause
HIV infection but it is not always the case. Consistency serves only to rule out
hypotheses that the association is attributable to some factor that varies across
studies.

• Specificity - Specificity criteria requires that a cause should have a single effect
instead of multiple effects. The original criterion of specificity is widely consid-
ered weak or irrelevant. Causes of a given effect cannot be restricted to have only
one effect on logical ground. It is quite natural that a cause has multiple effects.
For example, smoking can affect a smoker in multiple ways. Questions have been
raised on this criteria [46], [47].

• Temporality - Temporality refers that the cause must precede the effect. [48] re-
ferred temporality, an inarguably important criteria in terms of concluding causal-
ity. In the modern day research, there are instances where, many of effects re-
quire a much longer duration to occur, once the cause has occurred. It might also
happen that the cause is gradually inducing its effect over a long period of time,
making the process of causal extraction, costly, time consuming, and potentially
infeasible. For example, in case of epidemiological experiments, exposures occur
during specific periods of development or even in previous generation, resulting
phenotype differences in offspring.

• Biological Gradient - It is expected that the association must reveal a biological
gradient or monotone unidirectional dose-response curve suggesting that causal-
ity is more likely. For example, more smoking means more carcinogen exposure
and more tissue damage, hence more carcinogenesis. Such an example may not
be present always. For example, the controversial relation between alcohol con-
sumption and mortality. Sometimes the monotone trend may be due to a causal
relation between the confounding factor and the effect, rather than between the
non-causal factor and the effect.

• Plausibility - The criteria suggests that the causality inferred should be consis-
tent with the current body of knowledge regarding etiology. For instance, a bio-
logically feasible causation, observed from the research, is more likely to be true.
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Here the phrase “current body of knowledge is important”, because the knowl-
edge will get updated as new discoveries happen, making the currently inferred
relations more likely or less likely in the future. For example, the correct cause
of typhus infections, rejected on the grounds of plausibility, was accepted when
the knowledge got updated. A new association observed must not be ignored, just
because it is odd.

• Coherence - Cause and effect interpretation of the data should not seriously
conflict with the generally known facts. The cause-and-effect story should make
sense with all knowledge available to the researcher. Absence of coherent infor-
mation should not be confused with presence of conflict with coherent informa-
tion. Hill stated, histopathologic effect of smoking on bronchial epithelium (in
reference to the association between smoking and lung cancer) or the difference
in lung cancer incidence by sex, could reasonably be considered examples of plau-
sibility as well as coherence.

• Experiment - Occasionally it is possible to appeal to the experimental or semi-
experimental evidence. For example, because of some observed association, some
preventive action is taken. If persons stop smoking cigarettes, is the associated
event (lung cancer in this case) affected? Here the strongest support for the cau-
sation hypothesis may be revealed (through intervention or cessation).

• Analogy -When one causal agent is known, the standards of evidence are lowered
for a second causal agent that is similar in some way [49]. For example, if there is
strong evidence of a causal relationship between a particular agent and a specific
disease, a weaker evidence that a similar agent may cause a similar disease, should
be accepted by researchers. Analogy provides a source of more intricate causal
hypothesis. Absence of analogies could indicate lack of imagination or experience
rather than falsity of the hypothesis.

These above mentioned 9 criteria could guide researchers in distinguishing causality
from association and perform complete and thorough checks from significant views be-
fore concluding an association into causality. These criteria prove as mere guidelines
and assist the researchers to provide conclusions with higher confidence. However, the
criteria do not guarantee the truthfulness of the conclusions.

In [50], authors describe the general causation approach provided by Hill’s criteria as
an assessment tool for specific causation with regards to post traumatic headache (PTH)
and sexual assault. They emphasize that, fact finders are left at an evidential impasse,
rather than a standard process to find the valid opinion among the conflicting opinions.
They try to answer two major forensic questions “could the exposure have caused the
disease or injury outcome in this case?” and those that answer the question “did the ex-
posure cause the disease or injury outcome in this case?”. Hill’s criteria are grouped into
three causal milestones : “Biological Plausibility”, “Temporality”, and “Strength of causal
association’’. “Biological Plausibility” is meant to demonstrate whether or not the expo-
sure could have caused the disease or injury outcome, instead of how often. “Temporality”
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suggests that the headaches must start after trauma and within a reasonable amount of
time. “Strength of causal association” is computed by comparing the risk of the condi-
tion relative to the suspected exposure, to the competing risk of the condition had the
exposure not occurred, given the time frame of the exposure. Relative risk is used as a
quantitative metric for specific causation. They conclude that the relative risk and the
role of time between the trauma and onset of symptoms are the most critical concepts
for the forensic examiner in dictating the strength of a causal relationship.

3.3 Causality detection using Information Theoretic approaches

Mutual Information (MI) of two random variables is the measure of mutual dependence
between the two variables. MI can be expressed as

𝐼 (𝑋 ; 𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋 |𝑌 ) = 𝐻(𝑌 ) − 𝐻(𝑌 |𝑋) = 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋 , 𝑌 ) (64.8)

where𝐻(𝑋), 𝐻(𝑌 ) are marginal entropies and𝐻(𝑋 |𝑌 ),𝐻(𝑌 |𝑋) are conditional
entropies and 𝐻(𝑋 , 𝑌 ) is the joint entropy of 𝑋 and 𝑌 .

Similarly, Conditional Mutual Information (CMI) is defined as the expected
value of the mutual information of two random variables given the value of third
variable.

𝐼 (𝑋 ; 𝑌 |𝑍) = 𝐻(𝑋 , 𝑍) + 𝐻(𝑌 , 𝑍) − 𝐻(𝑋 , 𝑌 , 𝑍) − 𝐻(𝑍)

= 𝐻(𝑋 |𝑍) − 𝐻(𝑋 |𝑌 , 𝑍) = 𝐻(𝑋 |𝑍) + 𝐻(𝑌 |𝑍) − 𝐻(𝑋 , 𝑌 |𝑍) (64.9)

[51] compare themethod of CMI for detection of causality with different meth-
ods. They compute the CMI between two variables of interest and propose that
a significantly high value of CMI indicates the presence of a causal link between
the investigated variables. They consider 𝑥(𝑡), 𝑦(𝑡) as two time series that repre-
sent the coordinates of two coupled dynamic systems 𝑋 and 𝑌 respectively. They
indicate information flow between 𝑥(𝑡) and 𝑦(𝑡 + 𝜏) conditioned on 𝑦(𝑡) and its
history. If this holds for various forward lags 𝜏 after averaging then there exists
a causal link 𝑋 to 𝑌 .

[52] first construct five examples of nonlinear systems where the Granger
causality approach fails and then they propose TimeDelayedMutual Information
(TDMI) to capture the relation between the time series with time delay 𝜏 .

𝐼 (𝑋 , 𝑌 , 𝜏 ) = ∑
𝑥𝑡

∑
𝑦𝑡−𝜏

𝑝(𝑥𝑡 , 𝑦𝑡−𝜏 )𝑙𝑜𝑔
𝑝(𝑥𝑡 , 𝑦𝑡−𝜏 )
𝑝(𝑥𝑡)𝑝(𝑦𝑡−𝜏 )

(64.10)
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where 𝑝(𝑥𝑡 , 𝑦𝑡−𝜏 ) is the joint probability distribution of two stationary signals
𝑋 = 𝑥𝑡 and 𝑌 = 𝑦𝑡 , 𝑝(𝑥𝑡) and 𝑝(𝑦𝑡) are their marginal probability distributions.

They propose that non-zero amplitude of mutual information indicates exis-
tence of interactions between the two signals and the sign of the time lag where
𝐼 (𝑋 , 𝑌 , 𝜏 ) reaches its peak magnitude is used to infer the causal direction of the
interaction.

The five scenarios considered where Granger causality fails are a)unidirection
is misinferred as no interaction, b)unidirection is misinferred as bidirection, c)
unidirection misinfered as reversed unidirection, d)bidirection misinfered as no
interaction and e)bidirection misinfered as unidirection. In first case of unidi-
rection misinfered as no interaction they start with a linear dynamical system
𝑥𝑡 = 𝜖𝑡 and 𝑦𝑡 = −0.1𝑥𝑡−1 + 𝜂𝑡 where 𝜖𝑡 and 𝜂𝑡 are independent and identically
distributed standard Gaussian random variables. Realization of this system gen-
erates time series 𝑥𝑡 and 𝑦𝑡 with data length 107. They found 𝐹𝑥→𝑦 ≈ 1.0 × 10−2
and 𝐹𝑦→𝑥 ≈ 6.0×10−8 for the significance threshold 𝐹𝑡ℎ𝑟 ≈ 1.1×10−6. So the linear
Granger causality identifies the direction of causal interaction as 𝑥 → 𝑦 . Next
they construct a new signal �̃� with its realization �̃� = 𝑥2. Here Granger causality
results give no causal interaction which is not correct. In contrast TDMI analysis
identified the direction correctly in both linear as well as nonlinear systems.

They show that the TDMI analysis is applicable in high dimensional complex
systems and have applied it to neural data to show the existence of 𝜃-driving
neuron in rat hippocampus that was reported in mouse hippocampus previously.

[53] investigate causal relationship between sentiment about a company in so-
cial media and it’s stock price. They use transfer entropy to detect strength and
direction of transfer of information between the sentiment and prices. This infor-
mation transfer between two variables X and Y in terms of conditional mutual
information for a given lag 𝑘 is given as

𝑇𝐸(𝑘)(𝑋→𝑌) = 𝐼 (𝑌𝑡 , 𝑋𝑡−𝑘 |𝑌𝑡−𝑘) = 𝐻(𝑌𝑡 |𝑌𝑡−𝑘) − 𝐻(𝑌𝑡 |𝑋𝑡−𝑘 , 𝑌𝑡−𝑘) (64.11)

Transfer entropy returns a non-negative real value and the magnitude of the
number representing the amount of information measured. To give a benchmark
they compare it with a null hypothesis from the dataset where any causal in-
formation is removed. Such null hypothesis data is obtained from the original
data by randomly shuffling the time sequence of observations. They compare
the statistical significance of the Transfer entropy results with Z as below:

𝑍 = 𝑇𝐸 − 𝜇𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒
𝜎𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒

(64.12)
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where 𝜇𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 and 𝜎𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 are the mean and standard deviation of the shuffled
transfer entropy. Larger Z score implies value of transfer entropy that is more
significantly deviating from the expected values implying higher causality. They
applied this to a set of top 50 companies of S&P for stock price provided by
Yahoo Finance and the sentiment index provided by Brain 2 from November 2018
to November 2020. The study revealed significant causal relationships between
companies price and sentiment.

[54] apply several methods based on Information theory to observational data
in ecohydrologic and other systems. They construct an example based on ob-
served 1 minute weather data consisting of air temperature 𝑇𝑎 , shortwave solar
radiation 𝑅𝑔 , wind speed 𝑊𝑆 and relative humidity 𝑅𝐻 collected over 12 hour
period from 6 AM to 6 PM on 30th Aug 2014 at the Sangamon Forest Preserve
site in Central Illinois. They consider each of the four variables as ‘target’ of in-
formation and apply Transfer Entropy, Information decomposition and causal
history analysis to study time dependent interactions.

TE quantifies the information transferred to a target 𝑌𝑡 , from a sequence of
historical states of another variable 𝑋𝑡−1∶𝑡−𝜏 = {𝑋𝑡−1, 𝑋𝑡−2, ..., 𝑋𝑡−𝜏 }, given the
knowledge of its own past 𝑌𝑡−1∶𝑡−𝜏 = {𝑌𝑡−1, 𝑌𝑡−2, ..., 𝑌𝑡−𝜏 } and is given by 𝑇𝐸𝑋→𝑌 (𝜏 ) =
𝐼 (𝑌𝑡 ; 𝑋𝑡−1∶𝑡−𝜏 |𝑌𝑡−1∶𝑡−𝜏 ).

In the weather station example 𝑅𝐻 and 𝑅𝑔 provide information to air temper-
ature 𝑇𝑎 at very short time lags and 𝑇𝑎 and 𝑅𝐻 provide information to 𝑅𝑔 at
longer delays when transfer entropy is used. Their framework serves to analyze
the system at different levels of pairwise, joint and multivariate causal interac-
tions. They state that Information flow analyses to infer causal dependencies
provides novel insights into system or network level behavior.

4 Software tools for time-series causality

Causal inference from time-series data is a widely researched and applied field
in many real world domains. The traces of the field being studied can be traced
some centuries before. Some applications of extracting causal relations, using
different notions, are given in the section 3. It is obvious for such a widely studied
area, to have already developed powerful software tools, by the experts of the
field. In Table 1, we provide in brief, information about the various packages3

2https://braincompany.co (Accessed Date: 6𝑡ℎ September 2023)
3Mentioned tools and software packages are the ones available and widely used at the time of
writing this chapter. Some of them may become obsolete or get replaced with new packages
in the future.
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available for causal inference and extraction, in R (one of the most widely used
language for statistical research). There are equally powerful tools developed
in other languages like Python, Matlab, Java. Here we provide the information
about the tools available in R only.

Table 1: Software tools for time-series causality

Sr. No. Package
Name

Related Notion Description Important Functions

1 dbnlearn Dynamic Bayesian Network Allows to learn structure of uni-
variate time-series, learn parameters,
and perform forecasting.

fit(), learn(), predict(),
preprocessing()

2 dbnR Dynamic Bayesian Network Provides learning and inference in
DBNs of arbitrary Markovian order.
Learns network from data (by offer-
ing 3 structure learning algorithms),
performs exact inference, and pro-
vides forecasts of arbitrary lengths.

learn_dbn_struc(),
plot_dynamic_net-
work()

3 lmtest Granger Causality PerformsGranger causality test in bi-
variate time-series.

grangertest()

4 grangers Granger Causality Inference on Granger causality
in the frequency domain. Pro-
vides functions for calculation
of unconditional and conditional
Granger-causality spectra.

bc_test_cond(),
bc_test_uncod(),
Granger.conditional(),
Granger.unconditional()

5 vars Granger Causality Estimation, lag selection, diagnostic
testing, forecasting, causality analy-
sis, forecast error variance decom-
position and impulse response func-
tions of VAR models and estimation
of SVAR and SVEC models.

causality()

6 infotheo Information Theory The package implements various
measures of information theory
based on several entropy estimators

mutinformation(),
condinformation()

7 praznik Information Theory A toolbox of fast, native and par-
allel implementations of various
information-based importance crite-
ria estimators and feature selection
filters

cmiMatrix(), cmis-
cores()

5 Conclusion

A glance through the area of causal inference in time-series data, gives an im-
pression that Granger causality is the most widely used and studied notion of
causality. We have presented some important concepts related to Granger causal-
ity and its extensions in the section 2. However, Granger causality, too, has some
limitations. It needs constraints of stationarity to be fulfilled. Also, it fails to cap-
ture all the aspects of causality. It cannot address the causal question where two
features have a hidden common cause [14]. We describe some alternatives to
Granger causality in the section 3. Dynamic Bayesian Networks, are considered
equally powerful to the notion of Granger causality. The Hill’s criteria could also
be used to have a theoretical base while looking for causality. The Hill’s criteria
allows us to have a higher confidence on the results of the inference. In another
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notion, sufficiently high value of Conditional Mutual Information / Relative En-
tropy is considered to indicate presence of a causal link between the variables
under consideration. Readers can use the tools mentioned in section 4, to get a
quick start in practicing detection of causality in time-series.

From the multiple notions of causality, the best fitting notion needs to be used
considering the application and the objective of the research aswell as the statisti-
cal nature of the data. There are some studies that showcase the suitable settings
where these notions should be considered. For example in [55] the author com-
pared the notion of Granger’s causality to the that of DBN and came up with a
critical point related to the length of the time-series, which suggests that DBN
should be used when the time-series length is shorter than the critical point, oth-
erwise, Granger’s notion should be used. Similarly [51] gives comparative study
of six methods of causality in bivariate time-series. Overall, the field of causality
in time series is extremely vast and there are many more notions of causality
than the ones presented in the chapter. For example, the use of Temporal logic
for causal inference is another promising notion [56], [57]. The chapter contains
a very small portion of the field, and tries to capture the most widely utilized and
relevant notions, which could serve as a good introduction to the field.
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