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The prioritization of substructure analysis in diverse multi-feature network studies
remains an ongoing and crucial challenge. The significance of triangles is deeply
rooted in engineering and architecture, exemplified by structures such as bridges
and pyramids, which symbolize strength and stability. Similarly, hexagons hold
considerable importance in the realm of organic chemistry. In light of these ob-
servations, we intend to investigate the pertinence of these geometric configura-
tions and propose innovative experimental approaches to assess the strength in
diverse social network graphs. By doing so, we aim to enhance the algorithm’s
overall credibility and contribute to the advancement of this field. This study has
provided substantial evidence demonstrating that hexagonal cycles exert a signifi-
cantly greater influence on the strength of social networks, with triangular cycles
following closely behind.
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1 Introduction

Triangles are often regarded as one of the strongest shapes [1], although there
is no conclusive scientific study that definitively proves their superiority over
other shapes. Triangles are thought to be sturdy because they can uniformly
disperse applied forces among their three sides. Compression is the property
where force is distributed uniformly. The third side simultaneously experiences
tension, which causes it to stretch. Triangles are important in graph theory as
well, as shown by ideas like triadic closure and centrality measures, which centre
on the development of triangular connections.

However, a different perspective contends that hexagons might possess com-
parable or even superior strength to triangles [2]. This presumption is supported
by the observation that hexagons, like triangles, equally distribute force along all
sides and possess the unique ability to seamlessly cover surfaces without over-
laps. Intricate snowflake patterns and honeycombs, which have hexagonal cells
that allow for optimal honey storage, serve as illustrations of these traits.

Using a hexagonal framework [3,4] to study the kinetics of COVID transmis-
sion networks opens up a world of interesting possibilities. Hexagons have spe-
cial qualities that might be useful in halting the virus’s propagation. A hexagonal
tessellation [3] may also be superior to conventional methods for developing vac-
cination distribution tactics.

Triangles concentrate on regional connectivity patterns and reveal significant
nodes and characteristics within regional clusters [5]. On the contrary, hexagons
offer a formal framework for recording the interactions and dependencies among
global feature sets. Techniques like the Bron-Kerbosch algorithm [6], network
motif [7] discovery techniques, cycle detection algorithms, and graph colouring
algorithms [8] all benefit from the use of triangles and hexagons to increase their
efficiency and efficacy. Given these elements, it is critical to investigate and take
into account hexagons as feasible alternatives to conventional forms like trian-
gles in order to advance engineering, scientific inquiry, and real-world applica-
tions including network analysis.

The remainder of this article is divided into the following sections. In Section
2, we give an overview of pertinent prior research that has looked at various an-
gles on the subject of this study. Our suggested approach to solving the problem
is presented in Section 3. As we move on to Section 4, we present the outcomes
that show how effective our strategies were. We offer final thoughts and recom-
mendations for future research directions in Section 5.
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2 Related Work

Feature selection plays a vital role in Graph Neural Networks (GNNs), warrant-
ing extensive research efforts to identify the most critical features that contribute
to model performance. Notably, Mahmoud et al. [9] leveraged centrality mea-
sures to select influential features, demonstrating promising outcomes when in-
tegrated into their proposed model. Similarly, Thoma et al. [10] introduced a
novel approach for feature selection based on frequent subgraphs, which hold
significance in graph classification tasks owing to their prevalence and discrimi-
nated capabilities.

Several research efforts have been dedicated to improving node classification
in graph analysis. Rong et al. [11] introduced a novel approach known as DropE-
dge to mitigate the limitations observed in Graph Convolutional Networks (GCNs).
Chakrabarti et al. [12] leveraged link information to enhance the accuracy of
their model. Wang et al. [13] proposed an extension to the basic GCN model
called MSF-GCN, which incorporated attribute similarity along with network
topology considerations. In our study, we strive to enhance the accuracy of our
Graph Convolutional Network (GCN) model by integrating features associated
with the triangular and hexagonal cycles present in the graph dataset.

The current limitations in accuracy of graph classification tasks using Graph
Convolutional Networks (GCNs) have motivated the exploration of novel ap-
proaches. Nagar et al. [14] introduced Quadratic GCN (QGCN), a pioneering
concept that outperformed classical GCN models and yielded significantly im-
proved results. Another notable contribution by Bian et al. [15] involved the de-
velopment of a bidirectional GCN tailored for rumor detection in social networks,
effectively leveraging both top-down and bottom-up graph structures. Wilkens
et al. [16] pursued accuracy enhancement through an ensemble of GCNs. Fur-
thermore, alternative models have been employed to tackle graph classification
tasks. For example, Lee et al. [17] proposed an innovative Recurrent Neural Net-
work (RNN) model incorporating attention mechanisms to selectively focus on
the most informative portion of the graph.

Motifs have been extensively utilized across various domains, including biolog-
ical networks [18] and network traffic analysis [19]. In the realm of network traf-
fic analysis [19], motifs play a crucial role in predicting the type of applications
present within the network. By identifying significant motifs, a node’s descrip-
tion is formulated based on its involvement in these motifs. On the other hand,
in the study of metabolic networks [17], a distinct motif concept termed “reac-
tion motifs” is employed to analyze and extract valuable insights from metabolic
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networks. Researchers have also introduced innovative techniques for the ex-
traction of motifs from graphs [20] owing to their influential role in modeling
frameworks.

3 Methodology

In the methodology of a strength analysis algorithm is presented, incorporating
Graph Energy and Algebraic Connectivity with a focus on triangular and hexag-
onal cycles. Further node and graph classification experiments are discussed to
evaluate the effectiveness of these features in improving model accuracy. Mo-
tif analysis provides insights into the occurrence of specific patterns within the

graphs.

3.1 Strength Analysis

In the context of substructure prioritization, we present an advanced strength
analysis algorithm that incorporates the computation of Graph Energy [?] and Al-
gebraic Connectivity while harnessing the inherent graph structure, particularly
the triangular and hexagonal cycles. Graph Energy, a significant metric, entails
the summation of the squared absolute values of the eigenvalues derived from
the adjacency matrix of the graph. Additionally, Algebraic Connectivity refers
to the second smallest eigenvalue obtained from the Laplacian matrix, which
encodes the interconnections between the graph’s nodes.

We employ the first Harry Potter novel “Harry Potter and the Philosopher’s
Stone” to simulate an undirected social graph of characters and relationships.
The algorithm necessitates the calculation of cycles of length 3 and 6, described
in Algorithm 1 and Algorithm 2, respectively. Initially, the algorithm computes
the graph energy of all cycles with a length of 3. Subsequently, a node is randomly
removed [24] (representing cycles of length 2), and the resulting graph energy
is computed. The algorithm then determines the graph energy of cycles with a
length of 6, followed by the arbitrary removal of a node [24] (corresponding to
cycles of length 5) and subsequent graph energy calculation. A similar approach
is adopted for assessing Algebraic Connectivity.

In a real-world social graph, where edges are highly random, the increment
in the number of nodes does not necessarily lead to an increase in graph energy
and algebraic connectivity. Our experimental results demonstrate a substantial
disparity in the metrics, indicating significantly higher mean graph energy and
algebraic connectivity in cycles of lengths 3 and 6. Notably, the strength met-
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rics reveal that hexagonal cycles exhibit greater strength compared to triangular
cycles.

3.2 Node classification

In order to gain deeper insights into the significance of triangular and hexago-
nal cycles, we performed node classification on the Zachary’s Karate Club social
network dataset. This task revolves around the detection of two communities of
individuals who aligned with either the administrator or the instructor when a
conflict arose between these two influential figures. Our initial approach, referred
to as Model 1, employed a baseline model which utilized the identity matrix as
the feature matrix for the Graph Convolutional Network (GCN) model [25]. This
model adopted a two-layer architecture with hidden layers and leveraged the use
of the spectral rule [26]. For node classification [27], a logistic regression layer
was incorporated. After careful experimentation, the optimal number of epochs
chosen for the model was 100. To improve the accuracy of our model, we intro-
duced additional features based on the number of triangular and hexagonal cy-
cles associated with each node. The computation of these cycles was performed
using Algorithm 1 and Algorithm 2, which formed the foundation of Model 2.
Furthermore, we developed two additional models: Model 3 focused solely on
triangular cycles, while Model 4 exclusively considered hexagonal cycles. All
models incorporated the identity matrix as a feature, which was concatenated
with supplementary features in the case of Models 2, 3, and 4. The utilization of
these additional features resulted in notable accuracy improvements across all
models. Subsequent experimentation involved modifications to the utilized fea-
tures. For instance, we introduced a binary system wherein nodes were assigned
a value of 1 if they belonged to at least one cycle, and 0 if they did not. However,
these modified models yielded insignificant improvements as compared to the
mentioned models. This lack of significant results can be attributed to the rela-
tively small scale of the network, consisting of only 34 nodes, with a significant
majority of nodes being part of a cycle, given the social nature of the graph.

3.3 Graph Classification

The scope was expanded to include a distinct category of non-social dataset
termed the WICO Graph Dataset. This dataset posed a Graph Classification Prob-
lem [28], which deviated from the previously explored node classification paradigm
[27]. This extension aimed to explore the efficacy of the proposed methodology
in tackling the challenging task of graph classification in a context characterized
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by conspiratorial networks.

This assessment is performed using Algorithm 1, which allows for the deter-
mination of the triad count as an additional node-centric feature. The resulting
augmented graph, denoted as Gy, encapsulates the enriched network representa-
tion derived from the triad analysis. To further probe the graph’s intricate struc-
tural characteristics, a similar procedure is employed to identify hexagons within
the network. Algorithm 2 is utilized to calculate the hexagon count for each
node, capturing the extent of node involvement in such topological formations.
Consequently, the resulting graph, Gy, represents an expanded and refined net-
work representation, empowered by the integration of hexagon analysis. These
meticulous procedures enable a comprehensive understanding of the underlying
network structure, facilitating the extraction of valuable insights and the iden-
tification of discernible patterns pertaining to node participation in triads and
hexagons.

We further employed tensorized representations of Graphs G; and Gy, as input
data to train a Graph Convolutional Network (GCN) [29,30] classification model
aimed at distinguishing Conspiracy graphs from Non-Conspiracy Graphs. The
dataset comprises 816 graphs, which are segregated into input graphs and their
associated target labels. Diverse combinations of train-test splits are systemati-
cally investigated to gauge the model’s performance and optimize classification
accuracy. Multiple models are developed, each focusing on the exploration of
diverse feature sets for graph classification. Model 1 incorporates the number
of friends and followers as input features for classification. Model 2 expands
upon Model 1 by including an additional feature, the count of triangles in which
each node participates. Model 3 goes a step further by incorporating the count
of hexagons as an additional feature alongside friends and followers. Model 4
combines all the aforementioned features, including friends, followers, count of
triangles, and count of hexagons, to create a comprehensive input representation
for classification. The architecture is represented in Figure 1.

3.4 Motif Analysis

Motifs represent recurring patterns or subgraphs within a network that hold
significance across various applications. These motifs capture specific configu-
rations of nodes and edges, such as feed-forward loops, cliques, and chain-like
structures, conveying unique insights into network properties.

Notably, hexagonal cycles did not emerge as motifs within the dataset. Al-
though hexagonal cycles exist in the graphs, they are limited to only a few nodes
among many, rendering them ineligible as substructure patterns and consequently
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Figure 1: Proposed architecture for Graph classification

absent from the motif analysis. To further investigate, we conducted a compara-
tive analysis between triangular cycles in the WICO Graph Dataset and the pre-
viously mentioned Harry Potter dataset. Considering the diverse range of graph
sizes in the WICO Graph Dataset, we specifically focused on graphs with 25
to 30 nodes to align with the 28 nodes in the Harry Potter dataset. By examin-
ing the values in the last column of the identified motifs, i.e., triangular cycles,
we found that the Harry Potter dataset exhibited 285 cycles, whereas the WICO
Graph Dataset averaged only 54 cycles. Unlike explicit social graphs, conversa-
tional graphs are implicit social graphs and may not necessarily exhibit large
conversational patterns like hexagons.

4 Results

4.1 Strength Analysis

Notably, the strength analysis metrics reveals that hexagonal cycles exhibit greater
strength compared to triangular cycles. A detailed presentation of these findings
on Harry Potter dataset is provided in Table 1.

Table 1: Results of the strength analysis for Harry Potter dataset

Cycle Length Mean Graph Energy | Mean Algebraic Connectivity
2 (connection between nodes) 8865.89 -1.07
3 20329.43 20.36
5 2456.00 26.06
6 79143.89 122.45
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4.2 Node Classification

The accuracies attained by the four models for node classification are presented
in Table 2. Furthermore, to illustrate the progression of the loss function during
the training process, we have plotted the variation of loss against epoch in Figure
2. A higher rate of error decrease in the case of feature vectors with hexagon and
triangular count can indeed be indicative of better progress, which contributes to
determining the overall performance and superiority of a model. The higher rate
of error decrease suggests that the model incorporating these feature vectors is
more effectively leveraging the geometric properties of hexagons and triangles
to make accurate predictions.

Comparative analysis revealed that Model 4 outperformed Model 3, albeit falling
short of the accuracy achieved by Model 2. This observation aligns with the find-
ings obtained from strength analysis, suggesting that the inclusion of hexagonal
cycles significantly improves model accuracy. Consequently, it can be inferred
that both triangular and hexagonal cycles play crucial roles in increasing the
accuracy of the model.

Table 2: Results for Node classification of Karate Club dataset

Type of analysis/Model | Model 1 | Model 2 | Model 3 | Model 4
Node classification 0.50 0.53 0.66 0.72

All models

—— Identity
TrisHex

— T

—— Hex

0 200 400 600 800 1000
Epochs

Figure 2: Loss vs Epochs for different models

4.3 Graph Classification

In this case, the accuracy of the predictions for each of these baselines turned out
to be nearly the same. Although adding the count of triangles and hexagons did
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not significantly improve performance, it also did not have a detrimental effect.
The results across all these baselines remained consistent.

Several factors may have contributed to the observed results. Firstly, the effec-
tiveness of incorporating the count of triangles and hexagons as features was ev-
ident in "social graphs” such as the Harry Potter and Karate Club datasets, which
naturally exhibited a high occurrence of triangular and hexagonal cycles. How-
ever, this characteristic might not be as prevalent in the WICO Graph Dataset,
potentially impacting the results. Secondly, a notable discrepancy was observed
in the presence of hexagonal cycles within the WICO Graph Dataset. Approxi-
mately 50% of the graphs in the dataset contained hexagonal cycles, while the re-
maining graphs did not. This imbalance in cycle presence could have influenced
the accuracy outcomes.

Table 3: Results for Graph classification for WICO Graph Dataset

Type of analysis/Model | Model 1 | Model 2 | Model 3 | Model 4
Graph classification 0.50 0.56 0.44 0.56

Overall the findings presented in this research highlights the significance of
considering subgraph or cycle characteristics in the analysis of graph datasets.
The observed disparities as well as the impact of additional features, emphasize
the importance of feature selection and its influence on accuracy improvements.

5 Conclusion and Future Scope

In this article, we present an investigation that offers a novel method and view-
point for choosing and prioritising features when developing network algorithms
and training graph models. We suggest a special training algorithm designed to
incorporate hexagonal and triangular features, with the goal of solving the is-
sue at hand. Our main goal is to demonstrate the importance of these structural
characteristics, supported by empirical data from natural phenomena, in order
to move beyond theoretical hypotheses. Additionally, in order to advance the
understanding of feature selection and graph structure learning for the purpose
of social network analysis, our work aims to advance this area of study. We con-
fidently claim, based on our thorough analysis, that hexagonal and triangular
cycles have a significant impact on predicting social graph outputs. We observed
that hexagonal cycles have a greater impact and consequently, produced a higher
accuracy as compared to that of triangular cycles. Four distinct tasks—Strength
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analysis, Node classification, Graph classification, and Motif analysis—are car-
ried out to support this claim.

In terms of future directions, we pinpoint two essential elements for enhanc-
ing this study. Firstly, there are efficiency issues because the current method for
identifying hexagonal cycles involves a computational complexity of O(N®), re-
sulting in significant computation time. To address this, a timeout constraint of 5
minutes was implemented. However, this constraint may have affected the over-
all performance of the models. We suggest looking into potential strategies to
reduce or optimise this complexity in order to speed up and improve the viabil-
ity of the identification process. Second, we would like to expand this work to
a variety of other domains and broaden its application beyond social networks.
We believe that by addressing these issues, the suggested methodology will be-
come more useful and applicable while also advancing our understanding of the
subject. Thirdly, we plan to explore this on a large explicit social graph dataset
where edges are based on explicit relations.
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1 Data

The text version of the novel "Harry Potter and the Sorcerer’s Stone” ! has also
been utilized as one of the datasets.

Zachary’s karate club dataset * represents a social network of a university
karate club. This well-known dataset consists of 78 edges and is publicly available.
The data is represented as a list of integer pairs, where each integer represents
a member of the karate club, and a pair indicates an interaction between two
members.

The WICO Graph Dataset® consists of a comprehensive collection of around
400 unique instances of Conspiracy and Non-Conspiracy Graphs. These instances
are organized into two folders and are accompanied by two important files: "node.csv’
and “edges.txt”. The "edges.txt” file provides detailed information about the con-
nections within the undirected graph, specifying the starting and ending nodes
for each edge. On the other hand, the "node.csv” file contains specific data on
the number of friends and followers associated with each distinct node ID, offer-
ing insights into the network dynamics. An instance of the dataset is shown in

2]

Figure 1.

2 Experimental Environment

Python 3.10.11 * was used to implement all the algorithms, and GoogleColab® was
used to implement all the tests. The deep learning framework that we used was
PyTorch®. We intend to fully publish the research and dataset on GitHub’ for the
benefit of the research community.

3 Algorithm Description

Thttps://github.com/pprzetacznik/nlp-n-grams/blob/master/train_cor-
pus/Harry%20Potter%201%20Sorcerer%27s_Stone.txt
*https://networkx.org/documentation/stable/auto_examples/graph/plot_karate_club.html/
*https://datasets.simula.no/wico-graph/
*https://www.python.org/downloads/release/python-31011/
Shttps://colab.research.google.com/
®https://pytorch-geometric.readthedocs.io/en/latest/
"https://github.com/Chaitra-Bhat383/HexagonsV-STriangles
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Figure 3: The Figure on the left represents a Non-Conspiracy Graph
and Figure on the right represents a Conspiracy Graph

Algorithm 2 Algorithm to generate triangular cycles
cycles < []i € Nj € N edgeli,jl € Ek € Vi # k &% edgeli,k] € E &&
edgelk,jl € E [i,j, k] ¢ cycle && [j,i,k] ¢ cycle&&[k,i,j] ¢ cycle&&li,k,j] ¢
cycle&&lj, k,i] ¢ cycle&&k, j,i] ¢ cycle cycle = cycle + [i, j, k]

Algorithm 3 Algorithm to generate hexagonal cycles
cycles < [] temp < [li€ N j € N edgeli,jl € Ek € Vi# k && edge[k,j] € E
leVi+l&&j 1 && edge[l,k] e Em e Vi # m&&j # m && k # m &&
edge[m,l] e Ene€ Vi +# n&&j # n&& k # n && | # n && edge[n,m] € E
temp < [i, j,k,I,m,n] temp ¢ cycles cycles = cycles + temp
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