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Abatch arrival and batch service queue have been considered. The arrival pattern is
Poisson. After completion of each service, the server takes a compulsory vacation,
and the server may also break down at random time epochs during service. For
this queuing model, using the supplementary variable technique, the probability-
generating function of the number of customers in the queue at different server
states has been obtained. The mean queue size and the probability of the server
being idle have been derived. Some particular models have been derived. Some
numerical models have been derived.
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1 Introduction

The study of mathematical modeling of queueing system plays a vital role in
day-to-day life as congestion situations occur in almost all the fields of research.
For example, many people access particular telephone towers for getting service
at the same time, similarly, many persons using internet felicity may search a
particular website at the same time, etc. Usually after completion of service to
the customers who are currently in the service station, the server may take rest
or go for a small break or go for maintenance. The duration of this period is called
vacation period of the server.
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The researcher incorporated vacation concept in queuing models as it best
suit with real-life problems. Doshi (1986) and Takagi (1991) have done excellent
survey works on vacation queues. Maragathasundari S et al. (2018) analyzed a
single server general service queue with compulsory vacation. In today’s world,
the concept of unreliable servers is very common in any type of service. So the
researchers added the unreliable state of the server in queuing models. In particu-
lar, the vacation queueing models studied with the concept of unreliable servers.
some related research works are: Li et al (1997) studied reliability analysis of a
general service queue with vacation and server breakdown, Grey et al(2000) an-
alyzed a vacation queue with server breakdown, Ke (2005) considered Modified
T Vacation policy queue with the unreliable server, Wang et al (2005) studied
comparative analysis for the N-policy general service queue with removable un-
reliable server. Vanitha (2019) studied a single server queue with general service
time, compulsory vacation, and three-phase repairs. Vanitha (2020) analyzed a
M/D/1 queue with compulsory vacation and random breakdowns.

Sometimess the server provides different types of service’s to arriving cus-
tomers. Kalyanaraman and Suvitha (2018) considered a single server queue with
compulsory vacation with two types of services and with restricted admissibility.

The study on batch arrival batch service queue with some other assumptions
is carried out by some authors. Madan et al(2003) considered the steady state
analysis of batch arrival batch service queue with breakdown. A Batch arrival
queue with variant vacation policy and balking was studied by Ke (2007). The
batch arrival queue with randomized vacation and the unreliable server was an-
alyzed by Ke et al (2012). Uma and Punniyamoorhthy (2016) studied bulk queues
with feedback, two choice of service and compulsory vacation. Kalyanaraman
and Nagarajan (2016) considered batch arrival fixed batch service queue with un-
reliable servers and with vacation. Uma and Manikandan (2017) analyzed bulk
queueing system with three stages of heterogeneous service, compulsory vaca-
tion and balking.

In this article, we consider an M[𝑋]/G(1,𝐾)/1 queue with an unreliable server
and with compulsory server vacation. This type of queuing system exists in man-
ufacturing industries, Transportation system etc. In manufacturing industries,
after products are approved for transportation to customer shops, they are trans-
ported to the shops in bulks by trucks. After transporting the products, the truck
will be used for other work or the truck is sent for maintenance (vacation period).
During the service period (transportation period), the truckmay breakdown. The
above situation can be modeled as an M[𝑋]/G(1,𝐾)/1 queue with unreliable server
and compulsory server vacation.
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The remainder of the article is organized as follows: Section 2 provides the
model description and mathematical analysis. In section 3, we obtain the mean
queue size of the model discussed in this paper. In section 4, we present some
particular models. In section 5, we present numerical results. In section 6, we
present a conclusion.

2 The Model and Analysis

The arrival process of customers follows the Poisson process with parameter 𝜆>0,
the customer arrives in batches of variable size X, where X is a random variable
with probability P{X=j}=C𝑗 , whose probability generating function is defined by
𝐶(𝑧) = ∑∞

𝑗=1 𝐶𝑗𝑧𝑗 .

The server provides service to customers in batches of variable size with mini-
mum batch size 1 and maximum batch size 𝐾(> 0). The service time distribution
of each batch is a random variable and it is assumed as generally distributed
with distribution function 𝐺(𝑥). After completion of service to each batch of cus-
tomers, the server takes a compulsory vacation of random duration independent
of a number of customers in the queue. The duration of the vacation period is
a random variable and it is assumed as generally distributed with distribution
function 𝐵(𝑥).

In addition the servermay break down during a service to a batch of customers,
the breakdowns are assumed to occur according to a Poisson process with rate
‘𝛼 ’. Once the server breaks down, the batch whose service is interrupted goes to
the head of the queue and the repair to server starts immediately. The duration
of the repair period is generally distributed with the distribution function 𝐻(𝑥).

The analysis of this model is based on the supplementary variable technique
and the supplementary variable is elapsed service time / elapsed vacation time /
elapsed repair time.

For analysis we define the conditional probabilities and probability as follows:

𝜇(𝑥) = 𝑔(𝑥)
1−𝐺(𝑥) is the conditional probability that the completion of service dur-

ing the interval (𝑥, 𝑥 + 𝑑𝑥], given that the elapsed service time is ‵𝑥′.
𝛽(𝑥) = 𝑏(𝑥)

1−𝐵(𝑥) is the conditional probability that the completion of vacation

during the interval (𝑥, 𝑥 + 𝑑𝑥], given that the elapsed vacation time is 𝑥 ’.
𝛾 (𝑥) = ℎ(𝑥)

1−𝐻(𝑥) is the conditional probability that the completion of repair dur-

ing the interval (𝑥, 𝑥 + 𝑑𝑥] , given that the elapsed repair time is ‘𝑥 ’.
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The Markov process related to this model is{(𝑁 (𝑡), 𝑆(𝑡)) ∶ 𝑡 ≥ 0} where 𝑁(𝑡)
be the number of customer in the queue and 𝑆(𝑡) be the supplementary variable
at time 𝑡 . and is defined as

𝑆(𝑡) = 𝑆1(𝑡), elapsed service time
= 𝑆2(𝑡), elapsed vacation time
= 𝑆3(𝑡), elapsed repair time

𝑃𝑛(𝑡, 𝑥)=P{At time ‘𝑡’, there are ‘𝑛’ customers in the queue(excluding the cus-
tomer in service) and the elapsed service time is ‘𝑥 ’}
𝑉 𝑛(𝑡, 𝑥)=P{At time ‘t’, there are ‘n’ customers in the queue and the elapsed

vacation time is ‘𝑥 ’}
𝑅𝑛(𝑡, 𝑥)=P{At time ‘𝑡’, there are ‘n’ customers in the queue and the elapsed

repair time is ‘𝑥 ’}
and
𝑄(𝑡)=P{At time ‘𝑡’, there are no customer in the queue and the server is idle}
The differential – difference equations for this model are

𝑑𝑃0(𝑥)
𝑑𝑥 = −(𝜆 + 𝜇(𝑥) + 𝛼)𝑃0(𝑥) (11.1)

𝑑𝑃𝑛(𝑥)
𝑑𝑥 = −(𝜆 + 𝜇(𝑥) + 𝛼)𝑃𝑛(𝑥) + 𝜆

𝑛
∑
𝑗=1

𝐶𝑗𝑃𝑛−𝑗(𝑥), for 𝑛 ≥ 1 (11.2)

𝑑𝑉0(𝑥)
𝑑𝑥 = −(𝜆 + 𝛽(𝑥))𝑉0(𝑥) (11.3)

𝑑𝑉𝑛(𝑥)
𝑑𝑥 = −(𝜆 + 𝛽(𝑥))𝑉𝑛(𝑥) + 𝜆

𝑛
∑
𝑗=1

𝐶𝑗𝑉𝑛−𝑗(𝑥), for 𝑛 ≥ 1 (11.4)

𝑑𝑅0(𝑥)
𝑑𝑥 = −(𝜆 + 𝛾(𝑥))𝑅0(𝑥) (11.5)

𝑑𝑅𝑛(𝑥)
𝑑𝑥 = −(𝜆 + 𝛾(𝑥))𝑅𝑛(𝑥) + 𝜆

𝑛
∑
𝑗=1

𝐶𝑗𝑅𝑛−𝑗(𝑥), for 𝑛 ≥ 1 (11.6)

0 = −𝜆𝑄 + ∫
∞

0
𝑅0(𝑥)𝛾 (𝑥)𝑑𝑥 + ∫

∞

0
𝑉0(𝑥)𝛽(𝑥)𝑑𝑥 (11.7)
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The boundary conditions are

𝑃0(0) = ∫
∞

0

𝐾
∑
𝑗=1

𝑉𝑗(𝑥)𝛽(𝑥)𝑑𝑥 + ∫
∞

0

𝐾
∑
𝑗=1

𝑅𝑗(𝑥)𝛾 (𝑥)𝑑𝑥 + 𝜆𝑄 (11.8)

𝑃𝑛(0) = ∫
∞

0
𝑉𝑛+𝐾 (𝑥)𝛽(𝑥)𝑑𝑥 + ∫

∞

0
𝑅𝑛+𝐾 (𝑥)𝛾 (𝑥)𝑑𝑥 for 𝑛 ≥ 1

(11.9)

𝑉𝑛(0) = ∫
∞

0
𝑃𝑛(𝑥)𝜇(𝑥)𝑑𝑥, for 𝑛 ≥ 0 (11.10)

𝑅𝑛(0) = 𝛼 ∫
∞

0
𝑃𝑛−1(𝑥)𝑑𝑥, for 𝑛 ≥ 1 (11.11)

𝑅0(0) = 0 (11.12)

and the normalization condition is

𝑄 + ∫
∞

0

∞
∑
𝑛=0

[𝑃𝑛(𝑥) + 𝑉𝑛(𝑥) + 𝑅𝑛(𝑥)]𝑑𝑥 = 1 (11.13)

For the analysis, we define the probability generating functions as follows:
𝑃(𝑥, 𝑧) = ∑∞

𝑛=0 𝑃𝑛(𝑥)𝑧𝑛, 𝑉 (𝑥, 𝑧) = ∑∞
𝑛=0 𝑉𝑛(𝑥)𝑧𝑛, 𝑅(𝑥, 𝑧) = ∑∞

𝑛=0 𝑅𝑛(𝑥)𝑧𝑛,

𝐶(𝑧) = ∑∞
𝑗=0 𝐶𝑗𝑧𝑗 ,

where
Let

𝑆(𝑧) = 𝑃(𝑧) + 𝑉 (𝑧) + 𝑅(𝑧), (11.14)

S(z) represents the probability generating function of number of customer in the
queue, independent of server state.

𝑆(𝑧) = {[𝑚 + 𝛼𝑧(1 − 𝐻 ∗(𝑚)](1 − 𝐺∗(𝑎)) + 𝑎𝐺∗(𝑎)[1 − 𝐵∗(𝑚)]}𝐴
𝑚{𝑎𝑧𝐾 − 𝑎𝐵∗(𝑚)𝐺∗(𝑎) − 𝛼𝑧[1 − 𝐺∗(𝑎)]𝐻 ∗(𝑚)} (11.15)

Let S(z)=
𝐼 1𝐴
𝑚𝐼 2

, where

𝐼 1 = [𝑚 + 𝛼𝑧(1 − 𝐻 ∗(𝑚))][1 − 𝐺∗(𝑎)] + 𝑎𝐺∗(𝑎)[1 − 𝐵∗(𝑚)]
𝐼 2 = 𝑎𝑧𝐾 − 𝑎𝐵∗(𝑚)𝐺∗(𝑎) − 𝛼𝑧[1 − 𝐺∗(𝑎)]𝐻 ∗(𝑚)

Since 𝑄 + 𝑆(1) = 1, which implies,
𝑄 = 1 − 𝑆(1)
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S(1)=0/0, So apply L’hospital rule two times, we have

S(1)=
𝐼 ′1𝐴′

𝑚′𝐼 ′2 /𝑧=1
, where

𝐼 ′1/𝑧=1 = −𝜆𝐸(𝑋)[1 − 𝐺∗(𝑎)][1 + 𝛼𝐸(𝑅)] + 𝛼𝐺∗(𝛼)𝐸(𝑉 )
𝐼 ′2/𝑧=1 = 𝛼𝐾 − 𝜆𝐸(𝑋)[1 − 𝐺∗(𝛼)] − 𝛼𝜆𝐸(𝑥)𝐸(𝑉 )𝐺∗(𝛼)

− 𝛼[1 − 𝐺∗(𝛼)][1 + 𝜆𝐸(𝑅)𝐸(𝑋)]
𝐴′
/𝑧=1 = 𝐾𝜆𝑄

+ ∫∞0 ∑𝐾
𝑛=1(𝐾 − 𝑛)𝑉𝑛(𝑥)𝛽(𝑥)𝑑𝑥 + ∫∞0 ∑𝐾

𝑛=1(𝐾 − 𝑛)𝑅𝑛(𝑥)𝛾 (𝑥)𝑑𝑥

3 Mean Queue Size

In this section, we calculate the mean queue size.
Let us differentiate S(z) with respect to z and by substituting z=1, we get the

mean queue size.
After differentiating S(z) in (25) with respect to z, we have

S’(z)=
𝑚𝐼2[𝐼 ′1𝐴+𝐼1𝐴′]−𝐼1𝐴[𝑚′𝐼2+𝐼 ′2𝑚]

[𝑚𝐼 2]2
Substituting z=1, we have S’(1)=0/0,
After applying L’hospital rule four times, we have

S’(1)=
2{𝑚′𝐼2[𝐼 ′1𝐴″+𝐼″1 𝐴′]−𝐼 ′1𝐴′[𝑚″𝐼 ′2+𝐼″2 𝑚′]}

6[𝑚′𝐼 ′2 ]2 /𝑧=1
𝐼″1/𝑧=1 = −2𝜆2𝐸2(𝑋)[1 + 𝛼𝐸(𝑅)][𝐺∗′(𝛼)]+ [1 − 𝐺∗(𝛼)][−𝜆𝐸(𝑋(𝑋 − 1))

−2𝛼𝜆𝐸(𝑅)𝐸(𝑋)−𝛼(𝜆2𝐸2(𝑋)𝐸(𝑅2)+𝜆𝐸𝑋(𝑋−1)𝐸(𝑅))] +2𝜆2𝐸2(𝑋)𝐺∗(𝛼)𝐸(𝑉 )
+2𝛼𝜆2𝐸2(𝑋)𝐺∗′(𝛼)𝐸(𝑉 ) −𝛼𝜆𝐸𝑋(𝑋 −1)𝐺∗(𝛼)𝐸(𝑉 )−𝛼𝜆2𝐸2(𝑋)𝐺∗(𝛼)𝐸(𝑉 2)

𝐼″2/𝑧=1 = 𝛼𝐾(𝐾 − 1) − 2𝜆𝐾𝐸(𝑋) − 𝜆𝐸𝑋(𝑋 − 1) + 𝜆𝐸𝑋(𝑋 − 1)𝐺∗(𝛼)
+2𝜆2𝐸2(𝑋)𝐸(𝑉 )𝐺∗(𝛼) − 2𝜆2𝐸2(𝑋)𝐺∗′(𝛼) + 2𝛼𝜆2𝐸2(𝑋)𝐸(𝑉 )𝐺∗′(𝛼)
−𝛼[𝜆2𝐸2(𝑋)𝐸(𝑉 2) + 𝜆𝐸(𝑉 )𝐸𝑋(𝑋 − 1)]𝐺∗(𝛼) −2𝛼𝜆𝐸(𝑋)𝐺∗′(𝛼)

− 2𝛼𝜆𝐸(𝑋)[1 − 𝐺∗(𝛼)]𝐸(𝑅) − 2𝛼𝜆2𝐺∗′𝐸(𝑅)𝐸2(𝑋)
−𝛼[1 − 𝐺∗(𝛼)][𝜆2𝐸2(𝑋)𝐸(𝑅2) + 𝜆𝐸𝑋(𝑋 − 1)𝐸(𝑅)]

𝐴″
/𝑧=1 = ∫∞0 ∑𝐾

𝑛=1(𝐾(𝐾 − 1) − 𝑛(𝑛 − 1))𝑉𝑛(𝑥)𝛽(𝑥)𝑑𝑥
+ ∫∞0 ∑𝐾

𝑛=1(𝐾(𝐾 − 1) − 𝑛(𝑛 − 1))𝑅𝑛(𝑥)𝛾 (𝑥)𝑑𝑥 + (𝐾(𝐾 − 1))𝜆𝑄

4 Some Particular Models

In this section, some particular models are derived related to the model discussed
in this article by replacing the general distribution by known.

Case(i)𝑀 [𝑋]/𝐺(1,𝐾)/1 queue with break down and with compulsory vacation
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Here we take, 𝐺(𝑥) = 1 − 𝑒−𝜇𝑥 ; 𝐵(𝑥) = 1 − 𝑒−𝛽𝑥 ; 𝐻(𝑥) = 1 − 𝑒−𝛾𝑥 and assume
that batch arrival size random variable X follows geometric distribution with
probability 𝐶𝑛 = (1 − 𝑠)𝑛−1𝑠 for 𝑛 ≥ 1, where s=1-t.

The probability generating function of number of customers in the queue, in-
dependent of the server state.

𝑆(𝑧) = {[𝑚(𝛾 + 𝑚) + 𝛼𝑧𝑚]𝑎(𝛽 + 𝑚) + 𝑎𝜇𝑚(𝛾 + 𝑚)}𝐴
𝑚{𝑎𝑧𝐾 (𝜇 + 𝑎)(𝛽 + 𝑚)(𝛾 + 𝑚) − 𝑎𝛽𝜇(𝛾 + 𝑚) − 𝛼𝑧𝑎𝛾 (𝛽 + 𝑚)} (11.16)

where

𝐴 = ∫
∞

0

𝐾
∑
𝑛=1

(𝑧𝐾 −𝑧𝑛)𝑉𝑛(𝑥)𝛽(𝑥)𝑑𝑥 +∫
∞

0

𝐾
∑
𝑛=1

(𝑧𝐾 −𝑧𝑛)𝑅𝑛(𝑥)𝛾 (𝑥)𝑑𝑥 + (𝑧𝐾 −1)𝜆𝑄

m=𝜆 -𝜆 C(z), a=𝜆 -𝜆 C(z)+𝛼
The mean queue size

S’(1)=
2{𝑚′𝐼2[𝐼 ′1𝐴″+𝐼″1 𝐴′]−𝐼 ′1𝐴′[𝑚″𝐼 ′2+𝐼″2 𝑚′]}

6[𝑚′𝐼 ′2 ]2 /𝑧=1
, where

𝐼 ′1/𝑧=1 = − 𝜆
𝑠𝛽𝛾(𝜇+𝛼) [𝛼(𝛾 + 𝛼)𝛽 + 𝛼𝜇𝛾]

𝐼 ′2/𝑧=1 = 𝛼𝐾𝑠𝛽𝛾(𝜇+𝛼)−𝜆𝛼𝛽𝛾−𝛼𝜆𝜇𝛾−𝛼2(𝛾 𝑠+𝜆)𝛽
𝑠𝛽𝛾 (𝜇+𝛼)

𝐴′
/𝑧=1 = ∫∞0 ∑𝐾

𝑛=1(𝐾𝑧𝐾−1 − 𝑛𝑧𝑛−1)𝑉𝑛(𝑥)𝛽(𝑥)𝑑𝑥
+ ∫∞0 ∑𝐾

𝑛=1(𝐾𝑧𝐾−1 − 𝑛𝑧𝑛−1)𝑅𝑛(𝑥)𝛾 (𝑥)𝑑𝑥 + (𝐾𝑧𝐾−1)𝜆𝑄
𝐼″1/𝑧=1 = {2𝜆2𝜇(𝛼 + 𝛾)𝛽2𝛾 − 𝛼𝛽2(𝜇 + 𝛼)[2𝜆(1 − 𝑠)𝛾 2 + 2𝛼𝐾𝜆𝑠𝛾 + 2𝛼𝜆𝛾(1 − 𝑠)

+2𝜆2𝛼] + 2𝜆2𝜇(𝜇 + 𝛾)𝛽𝛾 2 − 2𝛼𝜆2𝜇𝛽𝛾 2 − 2𝛼𝜆(1 − 𝑠)𝜇(𝜇 + 𝛼)𝛽𝛾 2
− 2𝛼𝜆2𝜇(𝜇 + 𝛼)𝛾 2}{ 1

𝑠2𝛽2𝛾 2(𝜇+𝛼)2 }
𝐼″2/𝑧=1 = {𝛼𝐾(𝐾 − 1)𝑠2𝛽2𝛾 2(𝜇 + 𝛼)2 + 𝛽2𝛾 2(𝜇 + 𝛼)[−2𝜆𝐾𝑠(𝜇 + 𝛼)

− 2𝜆(1 − 𝑠)(𝜇 + 𝛼) + 2𝜆(1 − 𝑠)𝜇] + 𝛽𝛾 2[2𝜆2𝜇(𝜇 + 𝛼) + 2𝜆2𝜇𝛽 − 2𝛼𝜆2𝜇]
+𝛾 2[−𝛼𝜇(2𝜆2 + 2𝜆(1 − 𝑠)𝛽)(𝜇 + 𝛼) + 2𝛼𝜆𝜇𝛽2𝑠] − 2𝛼2𝛽2𝜆𝑠𝛾 (𝜇 + 𝛼)

+2𝛼𝜆2𝛽2𝜇𝛾 − 𝛼2𝛽2[2𝜆2 + 2𝜆(1 − 𝑠)𝛾 ](𝜇 + 𝛾)}{ 1
𝑠2𝛽2𝛾 2(𝜇+𝛼)2 }

𝐴″
/𝑧=1 = ∫∞0 ∑𝐾

𝑛=1(𝐾(𝐾 − 1) − 𝑛(𝑛 − 1))𝑉𝑛(𝑥)𝛽(𝑥)𝑑𝑥
+ ∫∞0 ∑𝐾

𝑛=1(𝐾(𝐾 − 1) − 𝑛(𝑛 − 1))𝑅𝑛(𝑥)𝛾 (𝑥)𝑑𝑥 + 𝐾(𝐾 − 1)𝜆𝑄
Case(ii) 𝑀 [𝑋]/𝐺/1 queue with breakdown and with compulsory vacation
Here we take K=1,
The probability generating function corresponding to number of customers in
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the queue, irrespective of the state of the server.

𝑆(𝑧) = {[𝑚+𝛼𝑧(1−𝐻 ∗(𝑚)](1−𝐺∗(𝑎))+𝑎𝐺∗(𝑎)[1−𝐵∗(𝑚)]}𝐴
𝑚{𝑎𝑧−𝑎𝐵∗(𝑚)𝐺∗(𝑎)−𝛼𝑧[1−𝐺∗(𝑎)]𝐻 ∗(𝑚)}

where 𝐴 = (𝑧 − 1)𝜆𝑄, m=𝜆 -𝜆 C(z), a=𝜆 -𝜆 C(z)+𝛼
The mean queue size

S’(1)=
2{𝑚′𝐼2[𝐼 ′1𝐴″+𝐼″1 𝐴′]−𝐼 ′1𝐴′[𝑚″𝐼 ′2+𝐼″2 𝑚′]}

6[𝑚′𝐼 ′2 ]2 /𝑧=1
𝐼 ′1/𝑧=1 = −𝜆𝐸(𝑋){[1 − 𝐺∗(𝑎)][1 + 𝛼𝐸(𝑅)] + 𝛼𝐺∗(𝛼)𝐸(𝑉 )}
𝐼 ′2/𝑧=1 = 𝛼−𝜆𝐸(𝑋)[1−𝐺∗(𝛼)]−𝛼𝜆𝐸(𝑥)𝐸(𝑉 )𝐺∗(𝛼)−𝛼[1−𝐺∗(𝛼)][1+𝜆𝐸(𝑅)𝐸(𝑋)]
𝐴′
/𝑧=1 = 𝜆𝑄

𝐼″1/𝑧=1 = −2𝜆2𝐸2(𝑋)[1 + 𝛼𝐸(𝑅)][𝐺∗′(𝛼)]+ [1 − 𝐺∗(𝛼)][−𝜆𝐸(𝑋(𝑋 − 1))
−2𝛼𝜆𝐸(𝑅)𝐸(𝑋) − 𝛼(𝜆2𝐸2(𝑋)𝐸(𝑅2) + 𝜆𝐸𝑋(𝑋 − 1)𝐸(𝑅))]

+2𝜆2𝐸2(𝑋)𝐺∗(𝛼)𝐸(𝑉 )
+2𝛼𝜆2𝐸2(𝑋)𝐺∗′(𝛼)𝐸(𝑉 ) −𝛼𝜆𝐸𝑋(𝑋−1)𝐺∗(𝛼)𝐸(𝑉 )−𝛼𝜆2𝐸2(𝑋)𝐺∗(𝛼)𝐸(𝑉 2)

𝐼″2/𝑧=1 = −2𝜆𝐸(𝑋) − 𝜆𝐸𝑋(𝑋 − 1) + 𝜆𝐸𝑋(𝑋 − 1)𝐺∗(𝛼)
+2𝜆2𝐸2(𝑋)𝐸(𝑉 )𝐺∗(𝛼) − 2𝜆2𝐸2(𝑋)𝐺∗′(𝛼) + 2𝛼𝜆2𝐸2(𝑋)𝐸(𝑉 )𝐺∗′(𝛼)
−𝛼[𝜆2𝐸2(𝑋)𝐸(𝑉 2) + 𝜆𝐸(𝑉 )𝐸𝑋(𝑋 − 1)]𝐺∗(𝛼) −2𝛼𝜆𝐸(𝑋)𝐺∗′(𝛼)
−2𝛼𝜆𝐸(𝑋)[1 − 𝐺∗(𝛼)]𝐸(𝑅) − 2𝛼𝜆2𝐺∗′(𝛼)𝐸(𝑅)𝐸2(𝑋)
−𝛼[1 − 𝐺∗(𝛼)][𝜆2𝐸2(𝑋)𝐸(𝑅2) + 𝜆𝐸𝑋(𝑋 − 1)𝐸(𝑅)]

𝐴″
/𝑧=1 = 0

5 Numerical results

In this section, we present some numerical example related to the model I in
section 4.We fix the values of the parameters 𝜇, 𝛼, 𝛾 , 𝛽, 𝑠 andwe vary the values of
arrival rate 𝜆. For various values of𝐾 , we find the values of E(N). Also we find the
values of Q. The results are presented in tables 1 to 2. From the values, it is clear
that, as the arrival rate increases, the probability of server being idle decreases,
also the mean number of customers in the queue increases, for increasing values
of arrival rate. Which is very much coincide with our expectation.
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Table 1: Probability of Server Being Idle and Mean Queue Size
(𝛼 = 10, 𝛽 = 15, 𝜇 = 25, 𝛾 = 15, 𝑠 = 0.9)

𝜆 Probability of server being idle Mean Queue Size
K=2 K=3 K=4 K=5 K=6 K=2 K=3 K=4 K=5 k=6

1 0.8045 0.7846 0.7754 0.7701 0.7668 0.0596 0.0674 0.0707 0.0725 0.0736
2 0.7102 0.6829 0.6699 0.6625 0.6577 0.1163 0.1277 0.1333 0.1364 0.1383
3 0.6219 0.5901 0.5736 0.5641 0.5579 0.1767 0.1873 0.1946 0.1991 0.2019
4 0.5398 0.5066 0.4871 0.4751 0.4674 0.2435 0.2466 0.2549 0.2610 0.2652
5 0.4640 0.4330 0.4108 0.3963 0.3865 0.3204 0.3059 0.3139 0.3222 0.3286
6 0.3945 0.3697 0.3455 0.3281 0.3159 0.4117 0.3652 0.3709 0.3819 0.3916
7 0.3316 0.3171 0.2920 0.2718 0.2566 0.5237 0.4244 0.4247 0.4387 0.4532
8 0.2753 0.2758 0.2513 0.2284 0.2100 0.6652 0.4829 0.4736 0.4904 0.5110
9 0.2257 0.2460 0.2242 0.1996 0.1781 0.8491 0.5399 0.5148 0.5333 0.5610
10 0.1830 0.2282 0.2119 0.1871 0.1632 1.0965 0.5936 0.5448 0.5624 0.5971

Table 2: Probability of Server Being Idle and Mean Queue Size
(𝛽 = 15, 𝜇 = 15, 𝛾 = 15, 𝑠 = 0.9, 𝐾 = 4)

𝜆 Probability of server being idle Mean Queue Size
𝛼 =5 𝛼 =6 𝛼 =7 𝛼 =8 𝛼 =9 𝛼 =5 𝛼 =6 𝛼 =7 𝛼 =8 𝛼 =9

1 0.7294 0.7318 0.7341 0.7362 0.7382 0.0790 0.0801 0.0812 0.0821 0.0830
2 0.5888 0.5900 0.5910 0.5920 0.5929 0.1391 0.1486 0.1559 0.1617 0.1665
3 0.4636 0.4638 0.4640 0.4642 0.4643 0.1910 0.2139 0.2307 0.2436 0.2539
4 0.3537 0.3533 0.3529 0.3525 0.3522 0.2373 0.2775 0.3063 0.3282 0.3453
5 0.2592 0.2584 0.2577 0.2570 0.2564 0.2797 0.3402 0.3831 0.4152 0.4401
6 0.1805 0.1795 0.1786 0.1778 0.1771 0.3195 0.4023 0.4606 0.5037 0.5368
7 0.1180 0.1171 0.1162 0.1154 0.1146 0.3571 0.4633 0.5374 0.5918 0.6333
8 0.0725 0.0717 0.0709 0.0702 0.0695 0.3921 0.5215 0.6112 0.6767 0.7262
9 0.0446 0.0440 0.0434 0.0429 0.0424 0.4225 0.5740 0.6783 0.7539 0.8108
10 0.0353 0.0349 0.0346 0.0343 0.0341 0.4457 0.6162 0.7332 0.8175 0.8806

Table 3: Probability of Server Being Idle and Mean Queue Size
(𝛼 = 10, 𝛽 = 15, 𝛾 = 15, 𝑠 = 0.9, 𝐾 = 4)

𝜆 Probability of server being idle Mean Queue Size
𝜇 = 15 𝜇 = 16 𝜇 = 17 𝜇 = 18 𝜇 = 19 𝜇 = 15 𝜇 = 16 𝜇 = 17 𝜇 = 18 𝜇 = 19

1 0.7400 0.7448 0.7493 0.7534 0.7572 0.0839 0.0822 0.0806 0.0791 0.0777
2 0.5938 0.6040 0.6135 0.6224 0.6306 0.1705 0.1657 0.1611 0.1569 0.1529
3 0.4645 0.4790 0.4925 0.5051 0.5169 0.2624 0.2534 0.2451 0.2373 0.2300
4 0.3519 0.0697 0.3862 0.4017 0.4162 0.3592 0.3452 0.3323 0.3203 0.3091
5 0.2558 0.2759 0.2948 0.3125 0.3291 0.4599 0.4403 0.4221 0.4053 0.3895
6 0.1764 0.1981 0.2185 0.2377 0.2558 0.5630 0.5371 0.5131 0.4909 0.4702
7 0.1139 0.1366 0.1579 0.1780 0.1970 0.6659 0.6332 0.6030 0.5750 0.5491
8 0.0689 0.0919 0.1136 0.1340 0.1535 0.7648 0.7252 0.6886 0.6548 0.6235
9 0.0420 0.0647 0.0862 0.1066 0.1260 0.8548 0.8084 0.7656 0.7261 0.6895
10 0.0338 0.0558 0.0767 0.0965 0.1154 0.9291 0.8763 0.8279 0.7832 0.7418

115



Nagarajan.P1, Kalyanaraman.R2

Table 4: Probability of Server Being Idle and Mean Queue Size
(𝛼 = 10, 𝛽 = 15, 𝜇 = 15, 𝑠 = 0.9, 𝐾 = 4)

𝜆 Probability of server being idle Mean Queue Size
𝛾 = 16 𝛾 = 17 𝛾 = 18 𝛾 = 19 𝛾 = 20 𝛾 = 16 𝛾 = 17 𝛾 = 18 𝛾 = 19 𝛾 = 20

1 0.7438 0.7471 0.7501 0.7528 0.7552 0.0801 0.0768 0.0739 0.0713 0.0690
2 0.6004 0.6062 0.6115 0.6162 0.6205 0.1625 0.1554 0.1492 0.1437 0.1387
3 0.4730 0.4806 0.4874 0.4936 0.4992 0.2496 0.2384 0.2285 0.2198 0.2119
4 0.3613 0.3699 0.3777 0.3848 0.3912 0.3414 0.3258 0.3120 0.2998 0.2889
5 0.2653 0.2741 0.2821 0.2895 0.2963 0.4371 0.4170 0.3993 0.3835 0.3694
6 0.1850 0.1932 0.2008 0.2080 0.2146 0.5355 0.5112 0.4896 0.4703 0.4530
7 0.1207 0.1275 0.1340 0.1403 0.1463 0.6345 0.6065 0.5814 0.5589 0.5387
8 0.0728 0.0773 0.0820 0.0868 0.0916 0.7310 0.7004 0.6727 0.6475 0.6247
9 0.0418 0.0431 0.0452 0.0479 0.0509 0.8209 0.7893 0.7602 0.7333 0.7087
10 0.0284 0.0254 0.0241 0.0240 0.0247 0.8984 0.8654 0.8396 0.8126 0.7872

Table 5: Probability of Server Being Idle and Mean Queue Size
(𝛼 = 10, 𝛾 = 15, 𝜇 = 15, 𝑠 = 0.9, 𝐾 = 4)

𝜆 Probability of server being idle Mean Queue Size
𝛽 = 14 𝛽 = 15 𝛽 = 16 𝛽 = 17 𝛽 = 18 𝛽 = 14 𝛽 = 15 𝛽 = 16 𝛽 = 17 𝛽 = 18

1 0.7341 0.7400 0.7452 0.7497 0.7538 0.0849 0.0839 0.0830 0.0822 0.0816
2 0.5885 0.5938 0.5984 0.6024 0.6061 0.1723 0.1705 0.1691 0.1678 0.1667
3 0.4600 0.4645 0.4685 0.4720 0.4752 0.2649 0.2624 0.2604 0.2588 0.2574
4 0.3484 0.3519 0.3550 0.3579 0.3605 0.3621 0.3592 0.3568 0.3549 0.3533
5 0.2537 0.2558 0.2578 0.2597 0.2615 0.4631 0.4599 0.4574 0.4554 0.4538
6 0.1763 0.1764 0.1768 0.1774 0.1781 0.5659 0.5630 0.5607 0.5590 0.5576
7 0.1166 0.1139 0.1121 0.1110 0.1102 0.6676 0.6659 0.6645 0.6635 0.6628
8 0.0752 0.0689 0.0642 0.0607 0.0581 0.7638 0.7648 0.7656 0.7661 0.7667
9 0.0530 0.0420 0.0336 0.0270 0.0219 0.8487 0.8548 0.8593 0.8628 0.8656
10 0.0509 0.0338 0.0206 0.0103 0.0021 0.9143 0.9291 0.9399 0.9481 0.9546

From Table 1, it is observed that the probability of server being idle decreases as the arrival rate increases from
1 to 10 for different values of K=2, 3, 4, 5, 6. From Table 2, it is observed that the probability of server being
idle decreases as the arrival rate increases from 1 to 10 for different values of 𝛼 = 5, 6, 7, 8, 9. From Table 3,
it is observed that the probability of server being idle decreases as the arrival rate increases from 1 to 10 for
different values of 𝜇 = 15, 16, 17, 18, 19. From Table 4, it is observed that the probability of server being idle
decreases as the arrival rate increases from 1 to 10 for different values of 𝜇 = 16, 17, 18, 19, 20. From Table 9,
it is observed that the probability of server being idle decreases as the arrival rate increases from 1 to 10 for
different values of 𝜇 = 14, 15, 16, 17, 18.

6 Conclusion
In this article, a single server batch arrival, batch service queue with compulsory vacation and with unreliable
server has been completely analyzed. We have derived some particular models by assuming particular values
to the parameters. Also the numerical illustrations of the particular model considered are given in the form of
tables. The model can be extended by taking the break down period as generally distributed.

References
1. Doshi, B.T ”Queueing systems with vacation, a survey”, Queuing system, 1 (1986) 29-66

2. Grey W.L, Wang P.P and Scatt M.K, ” A vacation queueing model with service break down”, Applied
mathematical modelling, 24 (2000)391-400.

116



SCRS Proceedings of International Conference of Undergraduate Students

3. Haridass M and Arrumuganathan R ” Analysis of a bulk queue with unreliable server and single
vacation”, International journal of open problems compt. math. 1 (2008) 130-148.

4. Jayakumar S and Senthilnathan S, Modelling and Analysis of𝑀 [𝑋]/𝐺(𝑎,𝑏)/1queue with Multiple vaca-
tion, setup time, close down time, and server breakdown without interruption, International Journal
of Operations Research, 19 (2014) 114-139.

5. Kalyanaraman R and Nagarajan P, ”Bulk arrival, fixed batch service queue with unreliable server and
with compulsory vacation”, Indian Journal of Science and Technology, 9(38) (2016).

6. Kalyanaraman R and Suvitha V, ”A single server compulsory vacation queue with two type of services
and with restricted admissibility”, Far East Journal of Mathematical Sciences (FJMS), 103(1) (2018)
125-157.

7. Ke.J.C, ”Modified T. Vacation policy for an M/G/1 queuing system with an unreliable server and start-
up”, Mathematical and computer modeling, 41 (2005) 1267-1277.

8. Ke J.C, ” Operating characteristic analysis of M𝑋 /G/1 systemwith variant vacation policy and balking”,
Applied mathematical modeling, 31 (2007) 1321-1337.

9. Ke et al ”Analysis of batch arrival queue with randomized vacation policy and an unreliable server”,
Journal of system science and complexity, 25 (2012) 759-777.

10. Li W, Shi D and Chao X, ”Reliability analysis of M/G/1 queuing system with server breakdown and
vacations”, Journal of applied probability, 34 (1997) 546-555.

11. Madan, K.C. , Abu-Dayyeh,W. , Gharaibeh, M. Steady state analysis of two𝑀𝑋/𝑀 (𝑎,𝑏)/1 queue models
with random breakdowns. International Journal of Information and Management Sciences. 14 (2003)
37-51

12. Maragathasundari S, Asha N, and Swedheetha S, ”M/G/1 Queue with Compulsory short vacation and
reneging during optional Long vacation”, International Journal of Pure and Applied Mathematics, 118
(7) (2018) 317-323.

13. Takagi H, ”Queuing Analysis vacation and priority system”, North Holland, Amsterdam, 1 (1991).

14. Uma S and Manikandan P, ”Single Server Bulk Queueing System with Three Stage Heterogeneous
Service, Compulsory Vacation and Balking”,Int. J. Sci. Res. Publ. 7(4) (2017) 300-306.

15. Uma S and Punniyamoorthy K, ”Single server bulk queue with feedback, two choices of service and
compulsory vacation”, International Journal of Mathematical Archive, 7(11) (2016) 1-8.

16. Vanitha S, ”M/G/1 queue with compulsory vacation and three phase Repairs”, International Journal of
Management (IJM), 11(12) (2020) 2010-2019.

17. Vanitha S, ”M/D/1 queue with compulsory vacation and random Breakdowns”, International Journal
of Advanced Research in Engineering and Technology (IJARET), 11(12) (2020) 560-567.

18. Wang et al ”Comparative analysis for the N-Policy M/G/1 queuing system with a removable and un-
reliable server”, Mathematical Methods of Operational research, 61 (2005) 505-520.

117


