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Yield estimation is a critical task in modern agriculture, as it enables farmers to optimize
cropmanagement strategies and offers substantial benefits to stakeholders to optimize their
supply chains with informed decisions.In this paper, authors propose a novel approach for
yield estimation using image processing techniques, combined with state-of-the-art track-
ing algorithms and object detection algorithms such as YOLO v8 (You Only Look Once),
and BoT-SORT (Deep Learning-based Object Tracking). This research utilizes both image
processing and deep learning methods, providing a cost-effective and efficient solution for
crop yield estimation. The experiments conducted have demonstrated promising results
across various metrics, making it a valuable resource for farmers. By bridging the gap be-
tween technology and agriculture, this research not only improves crop yields but also
contributes to the sustainability of the food supply in a rapidly growing world population.
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1. Introduction 

Agriculture has been one of the most crucial sectors in the world since the stone age. The Food and 
Agriculture Organization (FAO) forecasts that the global population will reach 9.7 billion by 2050. In-
creasing the demand for global food production by 70%.Efficient and effective agricultural practices 
can help us meet this growing demand for food. The yield estimating bots can transform the agrarian 
sector by offering precise yield estimations, thereby empowering farmers to formulate decisions based 
on data. Additionally, helping stakeholders like grocery stores, grocery giants and merchants to optim-
ize and enhance their supply chain. 
 
In precision agriculture, fruit detection and counting accuracy are critical components that help far-
mers track crop growth, evaluate potential yield, and make well-informed decisions about harvesting 
and resource allocation. The scalability and efficiency of traditional manual counting methods are li-
mited by their labor-intensive and time-consuming nature.To tackle this challenge, this study introduc-
es an innovative method that uses computer vision techniques, a remotely controlled (RC) bot, and 
advanced algorithms to automate the processes of fruit identification and counting. 
 
The primary objective of this research is to design a system proficient in detecting and counting fruits. 
By harnessing the capabilities of cutting-edge computer vision algorithms, this manuscript endeavors 
to streamline the procedure of fruit identification and counting, reducing human involvement, and 
augmenting accuracy. 
 
It's essential to recognize the global environmental impact of conventional farming practices. This ap-
proach enables the targeted allocation of resources, thereby reducing the ecological impact while ensur-
ing that yields remain adequate to cater to the needs of the burgeoning population. 

2. Related Work 

Automated fruit detection in farms using robots is a topic of interest in agricultural research. Several 
papers discuss the development of robots for fruit detection and harvesting. Wang et al. propose a 
Transformer-based mask R-CNN model for tomato detection and segmentation, achieving high per-
formance in detecting and segmenting tomatoes [1]. Borkar et al. present a small farmer bot prototype 
that demonstrates fruit harvesting by detecting ripe fruits for plucking [2]. The CROPS project focuses 
on developing high-tech robots for site-specific spraying and selective harvesting of fruit and fruit vege-
tables, with the ability to detect fruit, sense ripeness, and gently detach ripe fruit [3]. Yoshida et al. 
propose a method to detect cutting points on tomato peduncles using a harvesting robot equipped with 
an RGB-D camera [4]. Ceres et al. present a robot prototype for aided fruit-harvesting in unstructured 
environments, where the operator detects fruits using a laser rangefinder and the computer performs 
precise location and picking sequence computations [5]. 
 
The authors in [6] present a system that uses an accelerometer-based gesture recognition technique to 
control the movements of a robotic arm. This allows for more intuitive and natural control of the arm 
based on the gestures of human hands.The system utilizes wireless control through the Zig-bee proto-
col, enabling remote operation of the robotic arm. The model proposed by [7] focuses on extracting 
fruit form and shade to establish unique function units for every fruit variety. The version comprises 3 
stages: pre-processing (PP), function extraction (FE), and trying out. Within the PP level, photo resiz-
ing is performed, followed by the FE stage where color, form functions, and scale invariant function 
transform are used to build function vectors. In the testing phase, the okay-nearest neighborhood type 
algorithm is utilized for fruit identity. Importantly, the version no longer recognizes fruits robotically, 
but additionally offers information about their calorie content material.  
 
To overcome the time-consuming strategies currently deployed, an automated fruit counting system 
with the use of imaging and prescient techniques is proposed in this work. The device makes use of a 
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minimal Euclidean distance-based total segmentation technique to extract fruit areas from input pix. 
Circle overlaying is then finished on the fruit regions, and fruit counting is finished based totally on the 
centroids of those areas [8].  
 
The system proposed in [9] demonstrates correct detection and counting of apples in looking at pic-
tures, imparting a promising solution for efficient crop control and productivity enhancement in the 
agricultural enterprise. An investigation into the use of digital image analysis for distinguishing be-
tween fruit and other elements within Cabernet Sauvignon canopies revealed a strong correlation. Spe-
cifically, the ratio of 'fruit' pixels to the total image pixels accounted for 85% of the yield variation. 
These findings have significant implications for the future advancement of automated and spatially 
aware techniques for predicting vineyard yields. 
 
Deep learning-based approaches have gained interest in fire detection in smart cities. Al-Turjman et al. 
proposed a hybrid approach combining CNN and RNN for fire detection, achieving high accuracy and 
low false alarm rates. The system is compiled of YOLOv8-based approach for fire detection in outdoor 
scenes, achieving an accuracy of 92.8% The proposed YOLOv8-based smart fire detection system 
(SFDS) in this paper improves accuracy, reduces false alarms, and can be extended to detect other ob-
jects of interest in smart cities [10]. In other research, author’s used k-means segmentation on orange 
tree images to minimize shadow effects and extract oranges using blob detection and size calculation. 
The object separation step is used to separate overlapping fruit, reduce undesired edges, and segment 
the object in the image using a particular RGB value. Results show that manually counting and marking 
all the orange fruit in all the input images produces a ground truth [11]. 
 
The YOLO family has undergone numerous modifications since its conception, each improving upon 
the ones before it to address flaws and improve performance. With an image size of 640 pixels, YO-
LOv5x received an AP of 50.7% when tested on the MS COCO dataset test-dev 2017. On an NVIDIA 
V100, it can run at a speed of 200 FPS with a batch size of 32[12]. The proposed system of yield estima-
tion by [13] is divided into two phases: GUI development and image acquisition. Charge-coupled device 
(CCD) is used to capture images of tree fruits, image processing is performed to modify the image, and 
image segmentation is used to separate input images into areas that strongly relate to objects or areas 
of interest. The implementation of crop yield detection involves finding the coordinates of edge pixels, 
calculating the mean of pixels, and calculating the center of clusters. 
 
In this paper, the authors propose modifications to enhance the state-of-the-art YOLO-V8 model, fo-
cusing on achieving speed and reliability in drone detection. The introduced enhancements involve the 
incorporation of Multi-Scale Image Fusion and the integration of the P2 Layer into the medium-size 
model (M-model) of YOLO-V8. The proposed model underwent evaluation in the 6th WOSDETC chal-
lenge, providing a practical assessment of its performance in real-world scenarios [14]. 
 
Yiting Li, Qingsong Fan, Haisong Huang, Zhenggong Han, and Qiang Gu wrote- about improving drone 
target identification methods in their piece. They target challenges like missing small targets and 
flawed detection in aerial shots. Their strategy enlists BiPAN-FPN, used for featuring and 
GhostblockV2 to minimize information loss. The VisDrone2019 dataset was used to test their model 
and various other tests. Theseshowed the model's worth, suggesting a fresh path for deep learning in 
drone target detection [15].  
 
The paper "An Improved Fire Detection Approach Based on YOLO-v8 for Smart Cities" by Fatma M. 
Talaat and Hanaa Zinedine proposes a Smart Fire Detection System (SFDS) utilizing the YOLOv8 algo-
rithm. The SFDS, designed for smart cities, enhances fire detection accuracy in real-time while reduc-
ing false alarms and maintaining cost-effectiveness. The proposed smart city framework integrates Fog 
and Cloud computing with the IoT layer, ensuring swift data collection and processing for faster res-
ponses, minimizing property damage and human risks [16].Anand Koirala and his team came- up with 
an academic piece. It's a summary of how deep learning can play a part in spotting fruits and guessing 
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the- produce. They say we should use common measures to compare models. Then they suggest we get 
our images of fruits in orchards from open sources. They also say that transfer learning may be- help-
ful. Their main idea is practical tips for finding fruits. The-y talk about issues like hidden fruits. 
Be-sides, they also investigate how many fruits we might ge-t from orchards judging by the number of 
fruits in the picture-s of trees. To help newcomers in fruit detection research using deep learning [17].  
Stephen Nuske and his team present a new, nonharmful method for estimating vineyard yield through 
computer vision. They identify and count grape berries by their shape and look. This could be a great 
help to big vineyards. They test this syste-m with 224 vines of two kinds of grapes. The results match 
the real harvest yield very closely, with only a 9.8% error. Thus, this method is more inclusive and effi-
cient than the old, harmful methods usually used to predict vineyard yield [18].In Christine De-wi et 
al’s work [19] aim is simple: better traffic sign detection. They use Convolutional Neural Networks 
(CNN), tackling issues that go with limited datasets. The team applies Generative- Adversarial Net-
works (GAN) such as DCGAN, LSGAN, and WGAN to create synthetic training images. Quality of these 
images is measured by Structural Similarity Inde-x (SSIM) and Mean Square Error (MSE). Surprising-
ly, these synthetic pictures are very accurate. When Yolo V4 uses LSGANsynthesized images, thereis an 
accuracy of 89.33%. 
 
In the paper by Muhammad Hussain the evolution of YOLO object detectors from YOLO-v1 to the latest 
YOLO-v8 is explored, emphasizing their rapid growth since 2015. The YOLO variants prioritize real-
time and high-classification performance with efficient computational parameters. The review delves 
into architectural advancements across iterations and highlights YOLO's compatibility with industrial 
manufacturing, particularly in surface defect detection, showcasing its applicability for fast detection, 
high accuracy, and deployment on constrained edge devices [20].Growing global interest in cooperative 
robotics in agriculture, addressing crucial challenges such as food production for a growing population, 
environmental sustainability, and resilience during crises. The emergence of "Agriculture 4.0" and 
"Agriculture 5.0" technologies highlight the need for effective human-robot interaction models in hu-
man-robot interfaces, coordination, and the application of collaborative robots in livestock handling 
[21]. 

3. Methodology 

The literature review indicates computer vision-based techniques are best suited to detect and count 
fruit. In this research, authors propose RC-controlled bot mounted with a wide-angle camera. The feed 
from the camera is processed to detect the fruits. For generalization, only pomegranates are used in this 
research. 

3.1 Data Collection 

To train a computer vision model to detect and count pomegranates, a robust dataset of images was 
gathered. The authors utilized two primary sources for data acquisition:  

1. Publicly available YouTube videos - Publicly accessible YouTube videos offered an array of 
visual conditions, including varying light levels, angles, and stages of fruit maturity. A frame ex-
traction method was used to convert them into a set of still images. The videos were split approx-
imately at the rate of 30 frames per second, yielding a considerable number of images.  

2. Original footage taken directly from various farms - Simultaneously, images were cap-
tured from various pomegranate farms. A diverse array of images representing different scenarios 
that the RC bot could encounter in real-world conditions were captured. 

 
From the amassed collection, a selection process was carried out to choose the most suitable images. 
Discarding images that did not meet standards due to poor lighting, blurriness, or the absence of po-
megranates. After this rigorous process, the dataset was narrowed down to approximately 5,000 im-
ages. 
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3.2 Data Preprocessing 

In the preprocessing stage, the following steps were carried out: 
 

Auto-Orient - To ensure the correct orientation of all images, an auto-orientation function was ap-
plied. 
Resize - The images were resized to 1280x1280 resolution. 
Tile - Each image was divided into a grid of 2x2, resulting in four smaller images. 

 
Post-preprocessing, data augmentation was done. Augmentation is the most effective technique used to 
artificially expand the diversity and size of the dataset by applying various transformations to the im-
ages. Here are the augmentations performed: 

 
Rotation - Each image was rotated within a range of -14° to +14°. 
Saturation - The color saturation of each image was adjusted, varying it by -30% to +30%. 
Brightness - The brightness of each image was also varied within the range of -30% to +30%. 
Exposure - Exposure levels were adjusted between -25% and +25%. 
 
Bounding Box Augmentations: For the bounding boxes in each image, two key augmentations were 
performed: rotation (90°, both clockwise and counterclockwise) and exposure adjustment (between -
25% and +25%). 
 
Each image in the dataset was subjected to these augmentations, creating two output variations per 
training example. 
 
The final dataset consisted of 32,352 images, split into a training set, a validation set, and a test set. The 
training set consisted of 25,000 images, accounting for 78% of the total dataset, while the validation set 
consisted of 5,200 images, making up 16% of the dataset. The test set consisted of the remaining 2,000 
images, making up 6% of the dataset. 

3.3 Model Training 

The process of model training in this study focused on using the YOLOv8 object detection model. 
YOLO, or "You Only Look Once", is a real-time object detection system that has gained popularity due 
to its performance and speed. The YOLOv8 variant of this model introduces further enhancements, and 
in this study, the authors experimented with training the model with different pre-trained weights - 
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8xl.  
 
The first phase of model training involved training models with different pre-trained weights with 700 
epochs, 1280 batch size and batch size was varied according to the models. Table 1. Shows the configu-
ration used to train all the models, accuracy and inference time are displayed in Table 2.  
 
Retraining with different weights allowed the model to learn from the existing patterns identified in the 
pre-trained models, while further adapting to the specific features of the dataset. The differences in the 
results underscore the significance of choosing appropriate weights and parameters for training. It de-
monstrates the trade-offs and fine-tuning involved in achieving the optimal balance between precision, 
recall, processing speed, and resource usage, specifically tailored for the task of pomegranate detection 
and counting. 
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3.4 Detection and Counting

A Python GUI application serves as an interface between the user and the detection system. Th
allows the user to feed in a video or a real
processed for fruit detection using the trained YOLOv8 model.
 
Fruit Detection with YOLOv8.
is divided into a grid, where each cell is responsible for predicting multiple bounding boxes and class 
probabilities. These bounding boxes are evaluated by their confidence scores, which tell how likely a 
box contains an object and how accurate th
 
Second, the class probabilities denote the likelihood of the object belonging to a particular class (in this 
case, a pomegranate). This combination of bounding box prediction and class probability forms the 
final detection framework. The predicted bounding boxes are drawn over the original image, signifying 
the detection of pomegranates. Fig. 1 showcases the architecture of the yolov8 model.

Fruit Tracking and Counting with BoT SORT.
tracking algorithm, specifically the BoT SORT (Breadth of Time Spatial Object Recognizer Tracker) 
algorithm integrated within YOLOv8 for counting the fruits. BoT SORT is a simple yet effic
proach that uses bounding box coordinates from the detection phase and tracks objects across frames 
by assigning unique IDs to each detected fruit. 
 
In essence, BoT SORT uses spatial and temporal information from consecutive video frames to est
mate the movement of the detected fruits. This allows the algorithm to maintain the identity of the 
fruits even as they move across frames or temporarily disappear.When the video feed ends or is closed, 
the total number of unique fruit IDs provided by BoT 
The Fig. 2 describes the whole system flow, first the camera sends feed to the app and fruits are d
tected and tracked by the model updating the final fruit count.  

3.5 RC-Controlled Bot 

The proposed methodology employed a Remote Control (RC) bot, which acted as a mobile platform for 
the camera. 

Fig. 1. Detection model architecture 

Detection and Counting 

A Python GUI application serves as an interface between the user and the detection system. Th
allows the user to feed in a video or a real-time camera feed from the RC bot. This feed is then 
processed for fruit detection using the trained YOLOv8 model. 

Fruit Detection with YOLOv8. In YOLOv8, object detection is a two-step process.  First, th
is divided into a grid, where each cell is responsible for predicting multiple bounding boxes and class 
probabilities. These bounding boxes are evaluated by their confidence scores, which tell how likely a 
box contains an object and how accurate the bounding box is. 

Second, the class probabilities denote the likelihood of the object belonging to a particular class (in this 
case, a pomegranate). This combination of bounding box prediction and class probability forms the 

The predicted bounding boxes are drawn over the original image, signifying 
Fig. 1 showcases the architecture of the yolov8 model. 

Fig. 2. Detection and counting flow 

ng with BoT SORT. Once the fruits were detected, the authors used a 
tracking algorithm, specifically the BoT SORT (Breadth of Time Spatial Object Recognizer Tracker) 
algorithm integrated within YOLOv8 for counting the fruits. BoT SORT is a simple yet effic
proach that uses bounding box coordinates from the detection phase and tracks objects across frames 
by assigning unique IDs to each detected fruit.  

In essence, BoT SORT uses spatial and temporal information from consecutive video frames to est
mate the movement of the detected fruits. This allows the algorithm to maintain the identity of the 
fruits even as they move across frames or temporarily disappear.When the video feed ends or is closed, 
the total number of unique fruit IDs provided by BoT SORT corresponds to the total count of the fruits
The Fig. 2 describes the whole system flow, first the camera sends feed to the app and fruits are d
tected and tracked by the model updating the final fruit count.   

ogy employed a Remote Control (RC) bot, which acted as a mobile platform for 

 

A Python GUI application serves as an interface between the user and the detection system. The GUI 
time camera feed from the RC bot. This feed is then 

step process.  First, the image 
is divided into a grid, where each cell is responsible for predicting multiple bounding boxes and class 
probabilities. These bounding boxes are evaluated by their confidence scores, which tell how likely a 

Second, the class probabilities denote the likelihood of the object belonging to a particular class (in this 
case, a pomegranate). This combination of bounding box prediction and class probability forms the 

The predicted bounding boxes are drawn over the original image, signifying 
 

 

Once the fruits were detected, the authors used a 
tracking algorithm, specifically the BoT SORT (Breadth of Time Spatial Object Recognizer Tracker) 
algorithm integrated within YOLOv8 for counting the fruits. BoT SORT is a simple yet efficient ap-
proach that uses bounding box coordinates from the detection phase and tracks objects across frames 

In essence, BoT SORT uses spatial and temporal information from consecutive video frames to esti-
mate the movement of the detected fruits. This allows the algorithm to maintain the identity of the 
fruits even as they move across frames or temporarily disappear.When the video feed ends or is closed, 

SORT corresponds to the total count of the fruits. 
The Fig. 2 describes the whole system flow, first the camera sends feed to the app and fruits are de-

ogy employed a Remote Control (RC) bot, which acted as a mobile platform for 
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RC System Overview. The bot operates on a radio
mitter and receiver. In RC technology, the transmitter sends control si
interprets and executes the respective actions. These signals are transmitted over a specific frequency, 
offering precise control over the bot's movements and the camera's orientation
along with circuit diagram in fig. 4
 
Bot Design and Components. 
are managed by an Arduino Mega microcontroller, 
received inputs from the RC receiver, pr
the motors via the motor controller to the motors. A standout feature of the bot is a 3D
arm,built to hold and control the camera's positioning. The robotic arm allow
camera's angle as required. Although the camera was initially connected to a laptop for image 
processing, the system is designed to be compatible with compact GPU boards like the NVIDIA Jetson 
Xavier, and Jetson Nano.  

Fig. 

Operational Modes of the Bot
tional modes - Movement Control and Arms 

 
1. Movement Control Mode -

mand the bot to move in various directions and adjust its speed, enabling quick traversals of large 
spaces and careful maneuvering near pomegranate trees.

2. Arms Control Mode - In this mode, the operator has control over the camera's position through 
the 3D-printed robotic arm. This mode ensures that the camera can capture clear images of pom
granates from multiple angles and distances.

The bot operates on a radio-based control system, which consists of a tran
mitter and receiver. In RC technology, the transmitter sends control signals to the receiver, which then 
interprets and executes the respective actions. These signals are transmitted over a specific frequency, 
offering precise control over the bot's movements and the camera's orientation fig. 3 shows the bot 

t diagram in fig. 4. 

. The bot was designed to ensure mobility and adaptability. Themotors 
managed by an Arduino Mega microcontroller, selected for its robust I/O capabilities. The Mega 

received inputs from the RC receiver, processed these signals, and sent the corresponding outputs to 
the motors via the motor controller to the motors. A standout feature of the bot is a 3D
arm,built to hold and control the camera's positioning. The robotic arm allowed adjustment
camera's angle as required. Although the camera was initially connected to a laptop for image 
processing, the system is designed to be compatible with compact GPU boards like the NVIDIA Jetson 

Fig. 3. Side view and front view of RC-Bot 

Fig. 4. RC-Bot Circuit Diagram 

Operational Modes of the Bot. To optimize the bot's functionality, it is designed with two oper
Movement Control and Arms Control. 

- In this mode, the bot focuses on navigation. The operator can co
mand the bot to move in various directions and adjust its speed, enabling quick traversals of large 
spaces and careful maneuvering near pomegranate trees. 

In this mode, the operator has control over the camera's position through 
printed robotic arm. This mode ensures that the camera can capture clear images of pom

granates from multiple angles and distances. 

based control system, which consists of a trans-
gnals to the receiver, which then 

interprets and executes the respective actions. These signals are transmitted over a specific frequency, 
fig. 3 shows the bot 

The bot was designed to ensure mobility and adaptability. Themotors 
for its robust I/O capabilities. The Mega 

ocessed these signals, and sent the corresponding outputs to 
the motors via the motor controller to the motors. A standout feature of the bot is a 3D-printed robotic 

adjustments to the 
camera's angle as required. Although the camera was initially connected to a laptop for image 
processing, the system is designed to be compatible with compact GPU boards like the NVIDIA Jetson 

 

 

To optimize the bot's functionality, it is designed with two opera-

In this mode, the bot focuses on navigation. The operator can com-
mand the bot to move in various directions and adjust its speed, enabling quick traversals of large 

In this mode, the operator has control over the camera's position through 
printed robotic arm. This mode ensures that the camera can capture clear images of pome-
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The ability to transition smoothly between these two modes increases the bot's flexibility, making it a 
highly capable platform for fruit detection and counting.

Table 

Category 
CPU 

GPU 
Framework 
Programming Voice 

4. Results and Discussion

The authors obtained metrics this included box loss (box_loss), classification loss
tion focal loss (dfl_loss), precision, recall, mean average precision 50 (mAP50), and mean average pr
cision 50-95 (mAP50-95); 

The Fig. 5 shows the box loss vs epochs me
text of object detection models, during the training and validation process, the term "box loss" typically 
refers to the loss function that measures the distinction between the predicted boundin
actual ground truth bounding boxes of objects within an image using IoU (Intersection over Union). 
From the graph, it can be seen how the box loss goes down as the number of epochs for both training 
and validation sets is increased.  
 
Equation used to calculate IoU.  

 𝐼𝑜𝑈(𝐴

For class loss (cls_loss), the authors observed that the training and validating graphs are almost similar 
signifying model can adjust both training data and new data for validation. Class loss i
the overall loss function used during the training and validation of object detection and image classif
cation CNN models. For class loss, the rate of decrease in the loss slows down as the number of epochs 
increases. 
 
It was observed that Precision, Recall, mAP50, and mAP50
but the rate of increase slows down over time, represent
This research applied a range of YOLO models 
ing them across multiple formats for inference
Nano, being the most lightweight, exhibited the fastest performance across all formats. YOLO Small 

n smoothly between these two modes increases the bot's flexibility, making it a 
highly capable platform for fruit detection and counting. 

Table 1. Experimental environment configuration 

Configuration 
Intel(R) Xeon(R) Silver 4114 CPU @ 
2.20GHz, 125GB Ram, 1.8TB Disk 
Tesla V100 16GB 
YOLOv8.0.145 
Python 3.10.12, torch-2.0.1 

Results and Discussion 

The authors obtained metrics this included box loss (box_loss), classification loss (cls_loss), distrib
tion focal loss (dfl_loss), precision, recall, mean average precision 50 (mAP50), and mean average pr

Fig. 5. Results of large model. 

shows the box loss vs epochs metric graph for the training set and validation set, in the co
text of object detection models, during the training and validation process, the term "box loss" typically 
refers to the loss function that measures the distinction between the predicted boundin
actual ground truth bounding boxes of objects within an image using IoU (Intersection over Union). 
From the graph, it can be seen how the box loss goes down as the number of epochs for both training 

(𝐴, 𝐵) =
∩

∪
 (1) 

For class loss (cls_loss), the authors observed that the training and validating graphs are almost similar 
model can adjust both training data and new data for validation. Class loss i

the overall loss function used during the training and validation of object detection and image classif
. For class loss, the rate of decrease in the loss slows down as the number of epochs 

Precision, Recall, mAP50, and mAP50-95 increase with the number of epochs (x), 
but the rate of increase slows down over time, representing the typical behavior of a model.
This research applied a range of YOLO models - Nano, Small, Medium, Large, and Extr
ing them across multiple formats for inference graphs shown in fig. 6. In terms of inference time, YOLO 
Nano, being the most lightweight, exhibited the fastest performance across all formats. YOLO Small 

n smoothly between these two modes increases the bot's flexibility, making it a 

(cls_loss), distribu-
tion focal loss (dfl_loss), precision, recall, mean average precision 50 (mAP50), and mean average pre-

 

tric graph for the training set and validation set, in the con-
text of object detection models, during the training and validation process, the term "box loss" typically 
refers to the loss function that measures the distinction between the predicted bounding boxes and the 
actual ground truth bounding boxes of objects within an image using IoU (Intersection over Union). 
From the graph, it can be seen how the box loss goes down as the number of epochs for both training 

For class loss (cls_loss), the authors observed that the training and validating graphs are almost similar 
model can adjust both training data and new data for validation. Class loss is a component of 

the overall loss function used during the training and validation of object detection and image classifi-
. For class loss, the rate of decrease in the loss slows down as the number of epochs 

95 increase with the number of epochs (x), 
the typical behavior of a model. 

Nano, Small, Medium, Large, and Extra-Large, deploy-
. In terms of inference time, YOLO 

Nano, being the most lightweight, exhibited the fastest performance across all formats. YOLO Small 
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offered a commendable balance between 
but notably more accurate inference compared to YOLO Small. YOLO Large and Extra
their increased complexity, demanded more time for inference but delivered superior precision.
 
For below graphs - Blue, orange, green, red and purple
and extra-large models respectively.

Fig. 6. Graphs for recall, precision, mAP50 and mAP50

Equations used to calculate Precision, Recall, mAP 50 and mAP 50

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙

𝑚𝐴𝑃

For eqs. (2), (3) and (4) –  
TP = True Positive,FN= False Negative, FP = False Positive
AP = Average Precision (In this case 

 
The distinctions among the YOLO models, as deployed in different formats, revolve around three fu
damental aspects: model size, inference time, and mAP50
ty and architecture of the YOLO variant. Smaller models, like YOLO Nano, comprise fewer layers and 
parameters, resulting in a lightweight model suitable for resource
models, such as YOLO Extra-Large, are more intricate and sophisticated, demanding substantial co
putational resources. Second, 'inference time' signifies the duration it takes for a given YOLO model to 
process and analyze an input image. Faster inference times are vital for real
metric depends on the model's size and the efficiency of the deployment format. Lastly, 'mAP50
mean average precision across IoU thresholds, quantifies the model's accu
higher mAP score indicates that the model is better at precisely localizing and classifying objects in an 
image.  
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FN= False Negative, FP = False Positive and 
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at the cost of slightly increased inference time. YOLO Large and Extra-Large demonstrated the highest 
accuracy levels but necessitated more significant computational resources, resulting in slower inference 
times. The choice of deployment format, whether PyTorch, TorchScript, ONNX, OpenVINO, Tensor-
Flow, TensorFlow Lite, TensorFlow.js, or Paddle Paddle, influenced both inference speed and accuracy 
for each YOLO model variant, reflecting the trade-offs inherent in model selection and deployment. 

Table 2. Benchmark of PyTorch models on the experimental environment. 

Model Size (MB) mAP50-95 Inference Time 
(ms) 

Nano 12.1 0.511 8.1 
Small 21.5 0.517 8.92 
Medium 49.7 0.517 16.83 
Large 83.6 0.513 28.8 
Extra Large 130.4 0.520 43.79 

 
In Table 2, it is observed that the inference time for yolo models was directly proportional to the size of 
the yolo model. For the PyTorch format, yolo nano had smallest model size. And in terms of speed the 
small model was better considering the size. Overall medium model serves as a good trade-off between 
model size and inference time.  
 
Model size and model complexity is crucial when deploying models on devices with less computational 
power. Upon deployment on a Laptop equipped with Nvidia GTX 1650 4GB Graphics Processing Unit 
(GPU), the medium-sized model yielded optimal outcomes, with an average inference time of approx-
imately 50 milliseconds, while maintaining an average frame rate of 38.Extra-large sized model had the 
worst average inference time of about 400ms with and average rate of 23. 

5. Conclusion 

This research presents a comprehensive framework for automated detection and counting of fruits. 
Through the training and testing of the YOLOv8 model, the authors demonstrated its effectiveness in 
accurately detecting pomegranates in images. By integrating the BoT SORT tracking algorithm, precise 
fruit-counting results were achieved. The medium model deployed on laptop with NVIDIA gtx1650 had 
inference time of about 50ms with accurately counting the fruits showing promising results. 
 
The findings of this manuscript have significant implications for precision agriculture, offering a solu-
tion for automating fruit detection and counting. By leveraging the proposed system, corporations and 
grocery stores can enhance their supply chain by knowing the yield of area.Further research can ex-
plore the generalization of this framework to other fruits and automate the bot's navigation. Additional-
ly, high-quality and diverse training data will enhance the accuracy and reliability of the models. 
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