
Analysis of Evolution of Recent Trends
in Code Clone Detection Techniques
from Antiquated Techniques
Nidhi Sehrawat, Kamna Solanki, SandeepDalal, AmitaDhankhar
Maharashi Dayanand University, Rohtak, India
Corresponding author: Nidhi Sehrawat, Email: sehrawatnidhi1994@gmail.com

The process used to detect and reveal bugs from software is known as software test-
ing. This is a process as well as practice. This approach is different from software
development. It can be recognized as an integral element of software development.
Clone testing is a popular type of software testing. It is used during software de-
velopment to check for duplication in software. This approach not only saves the
time but the efforts of the software programmers. The copy and paste program gen-
erate the code over and over again. Therefore, a bug found in one unit recurs in
each copy. This makes the removal of bugs and protection of the software complex.
Code cloning complicates the protection of software. A variety of recent methods
of code clone detection and their evolution from antiquated techniques has been
studied in this paper.

Keywords: Code Clone, Machine Learning, Deep Learning, Tokenization, Type-II

2023. In Satyasai Jagannath Nanda & Rajendra Prasad Yadav (eds.), Data Sci-
ence and Intelligent Computing Techniques, 911–922. Computing & Intelligent
Systems, SCRS, India. https://doi.org/10.56155/978-81-955020-2-8-77



1 Introduction 

Software engineers during software development choose for copying and pasting a piece of source code 
directly from other source code part, albeit with minor changes, with the goal that they are comparable 
or even. that seem indistinguishable. This is known as software/code cloning, sometimes called 
duplication of code. There are many reasons for cloning code. One of the most fundamental reasons is 
that code clone allows the developers to accomplish the tasks in less time. This kind of behavior causes 
several problems related to programming and maintenance. To illustrate, let a bug occurs in a cloned 
code piece of a software framework [1], the developer needs to distinguish it all over and tackle it, 
making the process to maintain the software more challenging. In addition, in the context of software 
system security, the cloning of a vulnerable code segment can prompt the proliferation of clone 
vulnerability. Despite the fact that software engineers prefer to write source code that is more secure 
and limit the sensitivity in the source code during software development, code clone behavior certainly 
finds throughout the software programming cycle and makes the system more vulnerable. As it is 
difficult to dispense with every one of the current clones, the recognition and the board of code clones 
are critical. Since not all existing clones can be eliminated, the task of detecting and managing the code 
clones is more significant. 

1.1 Need of Code Cloning 

There is the need of comprehensive and mature programming to develop a high- quality SE project for 
which systematic and mature programming is required in the development. Nevertheless, sometimes, 
programmers like to recycle a code segment for accomplishing their tasks, even though it is not 
advisable. Following are the main reasons due to which the code clone is occurred. 

 Cost and Time Constraints: The programmers generally do code cloning to complete software 
development more competently [2]as it reduces cost as well as time, especially when tasks 
are meeting deadlines. 

 Limitations of Programmers’ Skills: Some programming tasks can be more difficult for some 
inexperienced, and even experienced programmers. For example, programmers may not be 
more proficient in a programming language or may find it difficult to understand functions 
that facilitate code reuse. 

 Use of Templates: Gradually, code templates deliver a systematic and finest code, and 
structures for programmers to assist them complete software development in a more 
excellent manner. Nevertheless, programs using the similar template may contain matching 
or substantially identical code segments, which results in code clones. 

 Fear to Bring in New Ideas: Occasionally, fresh plans or novel code leads to a longer SDLC, or 
more errors in existent software. Therefore, developers are afraid to introduce original 
notions or new code into their existent projects. 

 Accidental Cloning: Sometimes, some part of code written by chance by a programmer 
matches existent code, causing a sort of accidental code cloning [3]. 

1.2 Issues in Code Cloning 

While developing the software, not "re-inventing the wheel" is like two-fold approach. Clone cloning or 
reutilization of a code from other software projects is less time- consuming and does not require a large 
workforce. Whether intentionally or unintentionally, code clones have caused certain problems in 
software development and maintenance, as discussed below: 
 

 Redundancy: Using code clones excessively for developing software does not follow the rules 
of the encapsulation. Redundant clones initiate uncontrolled copy-paste, which makes it 
difficult for later developers to move the project forward. 

Nidhi Sehrawat, Kamna Solanki, Sandeep Dalal, Amita Dhankhar

912



 Licensing and plagiarism: Most of the programmers focus on reusing the code from other 
sources via publicly available platforms without having the knowledge of the license terms 
and conditions of its use. The clear result is the severe breach of copyright rules. 

 Reliability and security: To clone the code from unreliable third-party archives or bug-
infected sources also presents great issues in analyzing and testing the software, as this type 
of cloned code needs more efforts to fix the bug, re- factor, and incorporate [4]. 

 Bugs propagation: When the code, having a bug, is cloned, the bug is transmitted to several 
settings in the software system. This supports the maintenance effort for recognizing this bug 
in all cloned code pieces. 

 Vulnerability propagation: In case of copying of a fragment of code having susceptibility 
against certain assaults, the spread of vulnerabilities is occurred throughout the software 
system. 

1.3 Code Clone Detection 

It is a common belief that the presence of code clones increases the complexity of software 
maintenance. A code clone refers to a code piece which contains a similar code piece in the source code. 
There are many reasons for introducing code clones such as code reuse through 'copy and paste'. 
Modifying a code clone with several identical code pieces makes it essential to consider whether or not 
it is required to amend each of them. Especially, this process is very complex and costly for wide-
ranging software. We sometimes ignore some code pieces that should be modified together [5]. To 
automatically detect code clones, various detection techniques are present. Researchers have identified 
CODE duplication as a potentially grave issue adversely affecting the functional reliability, 
comprehension and development of software frameworks. In recent years, the research group of 
software clone has devised a number of techniques for detecting and analyzing copied code. The 
researchers have also paid attention to clone management operations, for example the detection of 
clones in a project's history, analyzing the uniformity of changes to clones, sequentially updating clone 
groups as the project develops, and refactoring of clones based on priority. Detection of code clones is 
essential in multiple software engineering operations, for example refactoring, code discovery [6], 
reuse, and bug finding. Upon finding a defect in a code snippet, the inspection of all cloned code 
snippets is essential for the similar defect. Consequently, code clone errors can propagate, causing 
maintenance overhead to a high level. Therefore, code clone detection is of great importance in 
software engineering, and has been broadly studied. 

1.4 Code Clone Detection 

It is a common belief that the presence of code clones increases the complexity of software 
maintenance. A code clone refers to a code piece which contains a similar code piece in the source code. 
There are many reasons for introducing code clones such as code reuse through 'copy and paste'. 
Modifying a code clone with several identical code pieces makes it essential to consider whether or not 
it is required to amend each of them. Especially, this process is very complex and costly for wide-
ranging software. We sometimes ignore some code pieces that should be modified together [5]. To 
automatically detect code clones, various detection techniques are present. Researchers have identified 
CODE duplication as a potentially grave issue adversely affecting the functional reliability, 
comprehension and development of software frameworks. In recent years, the research group of 
software clone has devised a number of techniques for detecting and analyzing copied code. The 
researchers have also paid attention to clone management operations, for example the detection of 
clones in a project's history, analyzing the uniformity of changes to clones, sequentially updating clone 
groups as the project develops, and refactoring of clones based on priority. Detection of code clones is 
essential in multiple software engineering operations, for example refactoring, code discovery [6], 
reuse, and bug finding. Upon finding a defect in a code snippet, the inspection of all cloned code 
snippets is essential for the similar defect. Consequently, code clone errors can propagate, causing 

Data Science and Intelligent Computing Techniques

913



maintenance overhead to a high level. Therefore, code clone detection is of great importance in 
software engineering, and has been broadly studied. 

1.5 Types of Code Clones 

To generate more understanding about the study type related to code cloning, and analyzing the 
destination source code more fruitfully, the code clone issues are categorized into 2 categories called 
text-level and semantic-level clones. Both of these code clone types are discussed as follow: 

1.5.1 Text-Level Clone 

 Type-1: Exact clone: It represents a code segment which represents a correct duplicate of the 
real code segment, excluding whitespaces, blanks, and comments that are considered to be 
an accurate clone. Unlike the real code segment, such code segment only makes modification 
in the outline of the comments and removes a blank line, so that it looks like the original code 
fragment. 

 Type-2: Renamed clone: It refers to a code segment having similarity to the real code 
segment, apart from the names of variables, categories, functions, and literals, are treated 
like a renamed clone [8]. 

 Type-3: Near miss clone: It is a code segment which is nearly identical to the real piece of 
code, excepting a few changes, for example included or eliminated statements, and a 
dissimilar usage of literals, variables, layouts, and comments is considered to be a near miss 
clone. This kind of segment is closely related to the miss clone form due to the changes which 
respectively provides 'a' and 'b' an alternate of 'string' and 'elem' variables. 

1.5.2 Semantic -Level Clone 
 
The code clones in this category depend on the semantic level, and is known as the Type-4 clone: 

 Type-4: Semantic clone: It is a code segment that is identical to the real code segment 
depending on their functions and not syntax. Such a segment amends the code with the help 
of a 'for loop' for deploying the similar result obtained through the function 'count', that is 
considered to be a semantic clone [9]. 

1.6 Code Clone Detection Phases 

Figure 1 provides a schematic representation of the complete process of detecting the code cloning. This 
process starts from preprocessing and ends with cloned clones reporting. The main element of 
frameworks of detecting the code clone is the code clone detector. Its main objective is to obtain copy- 
paste or duplicate source code and process the crucial steps of detection the cloned code. 

 

Figure 1. Code Clone Detection Process [5]. 

Nidhi Sehrawat, Kamna Solanki, Sandeep Dalal, Amita Dhankhar

914



The steps involved in the life time of detecting the code clone are explained as below: 

 Pre-Processing: Pre-processing code is the first step in clone detection removing all 
redundant or inappropriate fragments of the source code. This process aims at reducing 
irrelevant comparisons and computations, identifying the remaining the source code as 
source units to check the presence of direct clones' relationships [10] among one another 
once the unrelated portions are removed, and dividing the source parts into minor pieces 
based on the comparison algorithmic approach. 

 Conversion: This step is also known as transformation. It converts the source code obtained 
from the initial stage into the respective intermediary depiction for additional comparison. 
Intermediate representation types are tokens, etc. 

 Detection Matching: It identifies similar base code fragments by comparing the source code 
units with the destination files through a special comparison algorithmic approach. This step 
generates output in the form of a catalog of cloned classes [11]. 

 Formatting: It involves formatting the catalog of clone pairs achieved from the earlier stage 
depending on the comparison algorithmic approach into a fresh clone pair list corresponding 
to the real source code. 

 Post-Processing: This stage, known as manual analysis, is an optional step in most of the 
code clone detection frameworks. This step filters out FPs or missed clones based on re-
analysis which professional or automatic heuristics are conducted. 

 Report Clones: This stage emphasizes on reporting the results examined and established 
through the earlier steps to the framework to take more actions, for example correcting or 
deleting the source code [12]. 

1.7 Code Clone Detection Phases 

Clone detection methods are basically of four types which are explained as below: 

 Textual approach: These methods need less normalization or alteration of code. This method 
typically performs line to line comparison. This comparison is based on two kinds of 
matching i.e., simple line matching and parameterized line matching. This approach is based 
on string principally. 

 Lexical approach: In this technique, the source code is converted into tokens using lexical 
rules. Then, these tokens are compared [13]. 

 Syntactic approach: In this technique the theoretical tree is constructed. By means of parse 
code, the transformation of source code is done into a parse tree. Afterward, the theoretical 
tree is processed to discover clones through either tree matching or metrics. 

 Semantic approach: This technique represents source code as a program dependency graph. 
The nodes depict statements and terminology. Edge is the representative of control and 
information dependency. 

 
A clone identifier technique should attempt to find pieces of code of extreme resemblance in the source 
of a system or text. This technique does tell which code fragment will repeat again and this is the major 
issue of this approach. Hence, the detector or identifier should compare the promising code fragment 
with every second promising fragment in real manner. This kind of comparison is quite costly from 
calculation viewpoint. Therefore, a number of procedures are utilized to decrease the area of 
comparison before conducting real comparisons. Additional scrutiny and technique assistance may be 
needed for the identification of real clones even after the identification of potentially cloned fragments. 
In this chapter, the complete summary of fundamental stages in a clone discovery procedure is offered. 
This clone detection techniques can be compared and evaluated with respect to their fundamental 
systems for specific levels using this comprehensive approach. 

Data Science and Intelligent Computing Techniques

915



2 Literature Review 

2.1 Software Code Clone Detection using Deep Learning 

K. Xu, et.al (2021) suggested an improved SCCD-GAN (semantic code clone detection based on Graph 
Attention Network) for computing the similarity of code pairs and achieving FPR (false positive rate) 
[14]. The control and data flow information were extended to original abstract syntax tree for 
developing the graph representation of the code. An attention mechanism was adopted in this model 
for extracting significant code portions and attributes so that higher precision was obtained. 
BigCloneBench2 and Google Code Jam datasets were applied to compute the suggested algorithm. The 
results depicted that the suggested algorithm outperformed the existing techniques, and led to increase 
the precision and mitigate the FPR. 
 
D. Yuan, et.al (2022) devised a new GR (graph representation) technique on the basis of intermediate 
code for detecting the functional code clones [15]. The GE (graph embedding) methods were 
implemented for extracting the syntactic and semantic attributes. Thereafter, the Softmax classification 
algorithm was presented for detecting the functional code clone pairs. BigCloneBench dataset was 
considered in the experimentation while evaluating the devised technique. The experimental outcomes 
exhibited the supremacy of the devised technique over the traditional algorithms and enhanced the F1 
score up to 33.4%. 
 
Jie Zeng, et.al (2019) suggested a fast technique of detecting a code clone on the basis of weighted RAE 
(Recursive Auto Encoders) for evaluating the measure code similarity at the function level [16]. 
Initially, a weighted RAE was adopted for analyzing the program abstract syntax trees, to extract the 
program attributes and encode the functions to vectors. Subsequently, functions having similar vectors 
were reported as code clone pairs. However, this process consumed much time. This issue was resolved 
by converting the problem related to detect the clone into an ANNS in a high-dimensional vector set. 
The experimental results obtained on BCB (Big Clone Bench) depicted that the suggested technique 
was performed more effectively in comparison with other techniques. Moreover, this technique 
effectively detected the Type-3 or Type-4 clones, and offered FPR up to 0.05. 
 
Yi Gao, et.al (2019) developed a tree embedding method in order to detect the clone [17]. First of all, a 
tree was embedded for attaining anode vector for every intermediate node in Abstract Syntax Tree that 
was able for capturing the structure information regarding ASTs. Afterward, a lightweight technique 
was implemented for generating a tree vector from its involving node vectors. In the end, the code 
clones were recognized after evaluating the Euclidean distances among tree vectors. The BCB (Big 
Clone Bench) dataset was applied to compute the developed method. The outcomes exhibited that the 
accuracy and recall acquired from the developed method were found superior over the other 
techniques. 
 
Wenhan Wang, et.al (2020) constructed a graph representation of programs recognized as Flow- 
Augmented Abstract Syntax Tree algorithm [18]. The original ASTs were augmented with explicit 
control and data flow edges using FA-AST. Thereafter, this algorithm made the deployment of 2 GNNs 
(Graph Neural Networks) for quantifying the similarity of code pairs. The GNNs were adaptable in the 
domain of detecting the code clone. Google Code Jam and BCB (Big Clone Bench) datasets were utilized 
to implement the constructed algorithm. The results revealed the effectiveness of the constructed 
algorithm over the existing techniques. 
 
Yuan Yuan, et.al (2019) presented a new technique for detecting the semantic level clone [19]. The 
traditional DTW (dynamic time warping) algorithm was incorporated with bi-directional RNN 
(Recurrent Neural Network) auto encoder and GCN (Graph Convolutional Network) for exploiting the 
CFG as an intermediate illustration of the coding technique with the purpose of detecting the semantic 
level clone from local to global. A dataset was utilized to conduct the experiments. The experimental 

Nidhi Sehrawat, Kamna Solanki, Sandeep Dalal, Amita Dhankhar

916



outcomes demonstrated that the presented technique had generated the optimal results to detect the 
clone. 
 
Guangjie Li, et.al (2020) intended a DL mechanism with the objective of detecting the code clones [20]. 
This mechanism was focused on mapping the syntactical features, whose extraction was done from 
code pairs, into predictions of clones. The results of simulation validated that the intended mechanism 
had potential to differentiate the clone pairs from non-clone at precision of 90%. 

Table 1. Deep Learning based CCD 

Author Year Technique Used Findings Limitations 
K. Xu, et.al 2021 Improved SCCD- 

GAN (semantic code 
clone detection based 
on Graph Attention 
Network) 

The results depicted that the suggested 
algorithm outperformed the existing 
techniques 

This algorithm was unable to 
detect all kinds of clones. 

D. Yuan, et.al 2022 GR (graph 
representation) 
technique 

The experimental outcomes exhibited 
the supremacy of the devised technique 
over the traditional algorithms and 
enhanced the F1 score up to 33.4%. 

This technique offered poor 
results in some scenarios. 

Jie Zeng, 
et.al 

2019 Weighted Recursive 
Auto encoders (RAE) 

This technique effectively detected the 
Type-3 or Type-4 clones, and offered 
FPR up to 0.05. 

The suggested technique was 
incapable of detecting all kinds 
of code clones. 

Yi Gao, et.al 2019 Tree embedding 
technique 

The outcomes exhibited that the 
accuracy and recall acquired from 
the developed method was found 
superior over the other techniques. 

The precision was computed on 
randomly sampled set using 
this method which caused 
unintentional errors. 

Wenhan 
Wang, et.al 

2020 Flow- augmented 
abstract syntax tree 
(FA-AST) 

The results revealed the effectiveness of 
the constructed algorithm over the 
existing techniques. 

This algorithm had not 
captured syntactic and 
semantic features of source 
code with accuracy. 

Yuan Yuan, 
et.al 

2019 A novel semantic level 
technique 

The experimental outcomes 
demonstrate d that the presented 
technique had generated optimal results 
to detect the clone. 

This technique was inadequate 
to some programming 
language. 

Guangjie Li, 
et.al 

2020 Deep learning- based 
approach 

The results of simulation validated that 
the intended mechanism had potential 
to differentiate the clone pairs from 
non-clone at precision of 90%. 

The intended mechanism 
provided poor performance in 
case the data was collected from 
programming contest platforms 

 

2.2 Software Code Clone Detection using Deep Learning 

W. Zhu, et.al (2022) investigated a MSCCD (Multilingual Syntactic Code Clone Detector) to detect the 
code cloning in which a parser generator was exploited for creating a code block extractor for the target 
language [21]. This extractor was useful for extracting the semantic code blocks from a parse tree. In 
addition, the Type-3 clones were detected at several granularities using the investigated algorithm. 
There were twenty languages executed for quantifying the investigated algorithm on BigCloneEval with 
respect to execution time. The experimental outcomes revealed that the investigated algorithm 
performed well in comparison with other methods. 
 
Abdullah M. Sheneamer, et.al (2021) projected a novel formal framework of similarity in which the 
similarity measures were integrated [22]. Distinct similarity measures and similarity scores were 
employed as attributes in ML (machine learning) for detecting the code clones. The similarity measure 

Data Science and Intelligent Computing Techniques

917



was computed for extracting the similarity score attributes which were illustrated as vectors. The 
results exhibited that the projected framework detected the clone more effectively as compared to other 
detectors. Furthermore, this framework offered the success rate of 99% to detect the cloned codes and 
accuracy up to 100% in the majority of cases. 
 
Golam Mostaeen, et.al (2020) established an ML (Machine Learning) technique in order to automate 
the validation process [23]. At first, the code clones were taken from various clone detection tools to 
construct a training dataset for diverse subject systems. Thereafter, this technique was trained with the 
extraction of various attributes from those clones. The clones were validated using the trained 
algorithm without human inspection. The established technique was assisted in eliminating the FP 
(false positive) clones from the outcomes and computing the accuracy of any clone detectors for any 
given set of datasets in automatic way. The experimental results confirmed that the accuracy of the 
established technique was calculated 87.4% while classifying the clone. Abdullah M. Sheneamer, et.al 
(2021) projected a novel formal framework of similarity in which the similarity measures were 
integrated [24]. Distinct similarity measures and scores were employed as attributes in ML for 
detecting the code cloning. The similarity measure was computed for extracting the similarity score 
attributes which were illustrated as vectors. The results exhibited that the projected framework 
detected the clone more effectively as compared to other detectors. Furthermore, this framework 
offered the success rate of 99% to detect the cloned codes and accuracy up to 100% in the majority of 
cases. 
 
Dongjin Yu, et.al (2019) introduced a method to detect the code clone [25]. This method focused on 
implementing the Smith–Waterman algorithm on the byte code alignment. The technique calls and 
instruction sequences regarding code blocks were employed for detecting the cloned code of two levels. 
The similarity of code fragments was computed with regard to the similarity of both the sequences 
which implied the introduced method was capable of detecting some semantic code clones. At last, this 
method was computed in the experimentation. The experimental outcomes depicted that the 
introduced method was more efficient in contrast to other techniques. 
 
Hongfa Xue, et.al (2020) designed a new closed-loop known as Twin-Finder with the purpose of 
detecting the pointer-related code clone [26]. In this approach, the ML (Machine Learning) was put 
together with the symbolic execution methods for attaining precision. A clone verification system was 
presented for determining whether 2 clone samples were indeed clones. A feedback loop was utilized 
for enhancing the ML model and further mitigating the FPs. The outcomes of experiment indicated that 
the designed approach was adaptable for recognizing more code clones as compared to other detector 
and eliminating an average FP up to 91.69%. 

Table 2. Machine Learning based CCD. 
 

Author Year Technique Used Findings Limitations 
W. Zhu, et.al 2022 MSCCD 

(Multilingual 
Syntactic Code 
Clone Detector) 

The experimental outcomes revealed that 
the investigated algorithm performed well 
in comparison with other methods. 

This algorithm was 
inapplicable on real time 
datasets. 

Abdullah M. 
Sheneamer, 
et.al 

2021 novel formal 
framework 

The results exhibited that the projected 
framework detected the clone more 
effectively as Compared to other detectors. 
Furthermore, this framework offered the 
success rate of 99% to detect the cloned 
codes and accuracy up to 100% in the 
majority of cases. 

The recall was mitigated and 
the execution time was 
maximized in case of presence 
of Type-2 clones. 

Nidhi Sehrawat, Kamna Solanki, Sandeep Dalal, Amita Dhankhar

918



Golam 
Mostaeen, et.al 

2020Machine learning 
approach 

The experimental results confirmed that the 
accuracy of the established technique was 
calculated 87.4% while classifying the 
clone. 

The error rate of this 
technique was broadcasted in 
the process of computing the 
attributes. 

Abdullah M. 
Sheneamer, 
et.al 

2021 A new formal 
model 

Furthermore, this framework offered the 
success rate of 99% to detect the cloned 
codes and accuracy up to 100% in the 
majority of cases. 

This framework was not 
detected theType-3 or Type-4 
clones. 

Dongjin Yu, 
et.al 

2019 Smith– 
Waterman 
algorith m 

The experimental outcomes depicted 
that the introduced method was more 
efficient in contrast to other techniques 

The introduced method was 
not adaptable for the real- 
world software development 
scenario. 

HongfaXue, 
et.al 

2020Twin- Finder The outcomes of experiment indicated 
that the designed approach was adaptable 
for recognizing more code clones as 
compared to other detectors and 
eliminating an average FP up to 91.69%. 

The designed approach was 
Ineffective of eliminating 100 
% of FPs (false positives). 

2.3 Clone Software Code Clone Detection using Different Mechanisms 

Shogo Tokui, et.al (2020) suggested a system called Clone Notifier that was alerted on conceptions and 
changes of code clones to the programmers of software [27]. Initially, this system was adopted for 
recognizing the conceptions and modifications of code clones. Afterward, this system had potential for 
grouping them into 4 kinds and assigning the labels: consistent and inconsistent. The results revealed 
that the suggested system was effective for detecting these kinds of clones. 
 
KyoheiUemura, et.al (2019) formulated an integrated approach in order to detect the code clones and 
track their histories with the help of Historage [28]. An augmented form of the Git repository was 
acquired from the Historage in which pre-analyzed syntactic information was comprised. The code 
clones of method-level were taken in account in this approach and a technique of Git was useful to 
detect and track the code clones. Ten publicly available projects were considered to track and analyze 
the method-level code clones. The results indicated that the formulated approach was effective for 
eliminating the code clones of method-level without considering their changes or the time-interval of 
their change and generating a collection of method-level code clones simultaneously to prolong the 
survival as compared to those created at an individual level. 
 
Davide Pizzolotto, et.al (2020) investigated a tool named Blanker that was implemented to search and 
to unify the comparable statements of the language prior to deploy the source into the traditional code 
clone detector which was capable of detecting type-2 clones [29]. This stage was considered as a 
normalization step and led to generate the re-factorable results without any error occurred due to the 
potentially unrelated added, and with added flexibility in comparison with the checking for identical 
code portions. NiCad was employed for detecting the clones when the normalization stage was started 
and ended. The investigated tool had detected the10% more type-2 clones subsequent this stage. 
Moreover, no limitation, no FPs (false positives) and FNs (false negatives) were obtained intype-2 
report. 
 
Benjamin Bowman, et.al (2020) recommended a method known as VGRAPH in order to recognize the 
vulnerable code clones, so that the robustness was provided to modify the code [30]. Three graph-
based components, having potential to detect the customized code clones having susceptibility, and 
differentiate them from the patched ones, were implemented to construct a matching algorithm. This 
process had attained the precision of 98% and recall around 97%. This method became effective of 
recognizing ten vulnerabilities after its implementation on numerous versions of software packages. 

Data Science and Intelligent Computing Techniques

919



The results proved the efficacy of the recommended method for detecting more vulnerable code clones 
and obtained lower FPs (false positives). 
 
Zhipeng Gao, et.al (2019) developed Smart Embed, which was a web service tool assisted the Solidity 
developers in discovering the repetitive contract code and clone related bugs in smart contracts [31]. 
This system was planned on the basis of code embeddings and similarity checking methods. The 
similarities were compared among the code embedding vectors so that the cloned codes and bugs were 
detected for any code given via users. Consequently, the confidence of user was enhanced in the 
reliability of their code. The developed system offered the clone ratio of solidity code nearer to 90.01% 
which was found superior to the conventional software and precision up to 96%. 

Table 3. CCD based on Different Mechanisms. 

Author Year Technique Used Findings Results 
Golam 
Mostaeen, et.al 

2020 Machine 
learning 
approach 

The experimental results confirmed that 
the accuracy of the established technique 
was calculated 87.4% while classifying 
the clone. 

The error rate of this technique 
was broadcasted in the process 
of computing the attributes. 

Abdullah M. 
Sheneamer, et.al 

2021 A new formal 
model 

Furthermore, this framework offered the 
success rate of 99% to detect the cloned 
codes and accuracy up to 100% in the 
majority of cases. 

This framework was not detected 
theType-3 or Type-4 clones. 

Dongjin Yu, et.al 2019 Smith–
Waterman 
algorithm 

The experimental outcomes depicted 
that the introduced method was more 
efficient in contrast to other techniques. 

The introduced method was not 
adaptable for the real- world 
software development scenario. 

HongfaXue, et.al 2020 Twin- Finder The outcomes of experiment indicated 
that the designed approach was 
adaptable for recognizing more 
code clones as compared to another 
detector and eliminating an average FP 
up to 91.69%. 

The designed approach was 
Ineffective of eliminating 100% 
of FPs (false positives). 

 

This section presents the state-of-the-art review layout, a step-by-step method for the literature 
discussed. This research focuses on categorizing the current literature on code clone detection 
assessing the current trends. This evaluation finds relevant research articles from reputable electronic 
databases and the top conferences in the field. After then, inclusion and exclusion criteria were used to 
reduce the number of papers that were considered. Following that, final research studies were chosen 
based on a variety of variables. The information given here is the product of a thorough investigation. 
For this review study, various electronic database sources were investigated; some of the popular 
electronic databases used in this search like google scholar, Elsevier, Science direct etc. Using the 
inclusion criterion, which mainly depends on the techniques, the relevant work of code clone detection 
algorithms is retrieved from the enormous collection of data given by search engines. The data shows 
that journals account for most of the work in this study (51%), with conferences accounting for 40% of 
the work and book chapters accounting for 9%. In addition, the data depicts a year-by-year study of 
work relevant to code clone detection. 

3 Conclusion 

After removing this defect, this approach can be used to serve many purposes. The type 4 code clone is 
integrated with PM to remove the complexity of the function. Entire functions are cloned in type 4 but 
in conjunction with the PM algorithm, just a few lines are cloned. This in turn saves time and speeds up 
the process as compared to the earlier task. The code is an indication of the clone type complexity and 
the intensity of the complexity involved in detecting and identifying clones. In conclusion, Main 

Nidhi Sehrawat, Kamna Solanki, Sandeep Dalal, Amita Dhankhar

920



material is issued in popular journals and Type 4 code clone detection schemes will be developed in the 
time ahead. 

References 

[1] A. Sheneamer and J. Kalita, “A Survey of Software Clone Detection Techniques”, International Journal of 
Computer Applications, vol. 12, no. 8, pp. 692-698, 2016 

[2] B. van Bladel and S. Demeyer, "A Novel Approach for Detecting Type-IV Clones in Test Code," 2019 IEEE 
13th International Workshop on Software Clones (IWSC), 2019, pp. 8-12 

[3] N. Gupta, V. Gandhi, C. Hariya and V. Shelke, "Detection of Code Clones," 2018 International Conference 
on Smart City and Emerging Technology (ICSCET), 2018, pp. 1 

[4] Y. Yuki, Y. Higo and S. Kusumoto, "A technique to detect multi-grained code clones," 2017 IEEE 11th 
International Workshop on Software Clones (IWSC), 2017, pp. 1-7 

[5] Roopam and G. Singh, "To enhance the code clone detection algorithm by using hybrid approach for 
detection of code clones," 2017 International Conference on Intelligent Computing and Control Systems 
(ICICCS), 2017, pp. 192-198, 

[6] T. Zhang and M. Kim, "Automated Transplantation and Differential Testing for Clones," 2017 IEEE/ACM 
39th International Conference on Software Engineering (ICSE), 2017, pp. 665-676 

[7] C. M. Kamalpriya and P. Singh, "Enhancing program dependency graph based clone detection using 
approximate subgraph matching," 2017 IEEE 11th International Workshop on Software Clones (IWSC), 
2017, pp. 1-7 

[8] Y. Sabi, Y. Higo and S. Kusumoto, "Rearranging the order of program statements for code clone detection," 
2017 IEEE 11th International Workshop on Software Clones (IWSC), 2017, pp. 1-7 

[9] C. Wijesiriwardana and P. Wimalaratne, “Component-based experimental testbed to facilitate code clone 
detection research”, 2017, 8th IEEE International Conference on Software Engineering and Service Science 
(ICSESS), 2017, 165 – 168 

[10] G. Li, Y. Tang, X. Zhang and B. Yi, "A Deep Learning Based Approach to Detect Code Clones," 2020 
International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020, pp. 
337-340 

[11] H. Yu, W. Lam, L. Chen, G. Li, T. Xie and Q. Wang, "Neural Detection of Semantic Code Clones Via Tree-
Based Convolution," 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC), 
2019, pp. 70-80 

[12] D. Yu, J. Yang, X. Chen and J. Chen, "Detecting Java Code Clones Based on Bytecode Sequence Alignment," 
in IEEE Access, vol. 7, pp. 22421-22433, 2019 

[13] Y. -L. Hung and S. Takada, "CPPCD: A Token-Based Approach to Detecting Potential Clones," 2020 IEEE 
14th International Workshop on Software Clones (IWSC), 2020, pp. 26-32 

[14] K. Xu and Y. Liu, "SCCD-GAN: An Enhanced Semantic Code Clone Detection Model Using GAN," 2021 
IEEE 4th International Conference on Electronics and Communication Engineering (ICECE), 2021, pp. 16-
22 

[15] D. Yuan, S. Fang, T. Zhang, Z. Xu and X. Luo, "Java Code Clone Detection by Exploiting Semantic and 
Syntax Information From Intermediate Code-Based Graph," in IEEE Transactions on Reliability, vol. 1, pp. 
571-579, 2022 

[16] J. Zeng, K. Ben, X. Li and X. Zhang, "Fast Code Clone Detection Based on Weighted Recursive 
Autoencoders," in IEEE Access, vol. 7, pp. 125062-125078, 2019 

[17] Y. Gao, Z. Wang, S. Liu, L. Yang, W. Sang and Y. Cai, "TECCD: A Tree Embedding Approach for Code Clone 
Detection," 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2019, 
pp. 145-156 

[18] W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, "Detecting Code Clones with Graph Neural Network and Flow-
Augmented Abstract Syntax Tree," 2020 IEEE 27th International Conference on Software Analysis, 
Evolution and Reengineering (SANER), 2020, pp. 261-271 

Data Science and Intelligent Computing Techniques

921



[19] Y. Yuan, W. Kong, G. Hou, Y. Hu, M. Watanabe and A. Fukuda, "From Local to Global Semantic Clone 
Detection," 2019 6th International Conference on Dependable Systems and Their Applications (DSA), 2020, 
pp. 13-24 

[20] G. Li, Y. Tang, X. Zhang and B. Yi, "A Deep Learning Based Approach to Detect Code Clones," 2020 
International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020, pp. 
337-340 

[21] W. Zhu, N. Yoshida, T. Kamiya, E. Choi and H. Takada, "MSCCD: Grammar Pluggable Clone Detection 
Based on ANTLR Parser Generation," 2022 IEEE/ACM 30th International Conference on Program 
Comprehension (ICPC), 2022, pp. 460-470 

[22] A. M. Sheneamer, “Multiple Similarity-based Features Blending for Detecting Code Clonesusing Consensus-
Driven Classification”, Expert Systems with Applications, vol. 1, no. 13, pp. 4547- 4551, 2021 

[23] G. Mostaeen, B. Roy and J. Svajlenko, “A machine learning based framework for code clone validation”, 
Journal of Systems and Software, vol. 45, pp. 699-705, 2020 

[24] A. M. Sheneamer, “Multiple Similarity-based Features Blending for Detecting Code Clones using 
Consensus-Driven Classification”, Expert Systems with Applications, vol. 1, no. 16, pp. 561- 569, 2021 

[25] D. Yu, J. Yang, X. Chen and J. Chen, "Detecting Java Code Clones Based on Bytecode Sequence Alignment," 
in IEEE Access, vol. 7, pp. 22421-22433, 2019 

[26] H. Xue, Y. Mei, K. Gogineni, G. Venkataramani and T. Lan, "Twin-Finder: Integrated Reasoning Engine for 
Pointer-Related Code Clone Detection," 2020 IEEE 14th International Workshop on Software Clones 
(IWSC), 2020, pp. 1-7 

[27] S. Tokui, N. Yoshida, E. Choi and K. Inoue, "Clone Notifier: Developing and Improving the System to Notify 
Changes of Code Clones," 2020 IEEE 27th International Conference on Software Analysis, Evolution and 
Reengineering (SANER), 2020, pp. 642-646 

[28] K. Uemura, A. Mori, E. Choi and H. Iida, "Tracking Method-Level Clones and a Case Study," 2019 IEEE 13th 
International Workshop on Software Clones (IWSC), 2019, pp. 27-33 

[29] D. Pizzolotto and K. Inoue, "Blanker: A Refactor-Oriented Cloned Source Code Normalizer," 2020 IEEE 
14th International Workshop on Software Clones (IWSC), 2020, pp. 22-25 

[30] B. Bowman and H. H. Huang, "VGRAPH: A Robust Vulnerable Code Clone Detection System Using Code 
Property Triplets," 2020 IEEE European Symposium on Security and Privacy (EuroS&P), 2020, pp. 53-69 

[31] Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo and J. Grundy, "SmartEmbed: A Tool for Clone and Bug 
Detection in Smart Contracts through Structural Code Embedding," 2019 IEEE International Conference on 
Software Maintenance and Evolution (ICSME), 2019, pp. 394-397 

Nidhi Sehrawat, Kamna Solanki, Sandeep Dalal, Amita Dhankhar

922


