
Comparative Analysis of Dynamic Web
Scraping Strategies: Evaluating
Techniques for Enhanced Data
Acquisition
Kaajal Sharma, Gautam M Borkar
Ramrao Adik Institute of Technology, D Y Patil Deemed to be University, Nerul,
Navi Mumbai, India
Corresponding author: Kaajal Sharma, Email: kaajals@gmail.com

Web scraping efficiently extracts large data from websites, often in unstructured
HTML, which needs conversion for diverse applications. Web scraping supports
multiple languages (e.g., C++, Java, JavaScript, PHP, Python, Ruby). Python stands
out due to its efficiency, offering numerous built-in and third-party libraries, supe-
rior speed, and tailored selection for precise data extraction. Dynamic web pages,
characterized by their ability to update and modify content in real-time, are the
integral part of the modern web ecosystem. The dynamism and diversity of these
web pages pose a significant challenge when it comes to extracting valuable data
from them. Traditional web scraping techniques that rely on static HTML parsing
often fall short in the face of JavaScript-driven dynamic content. This technical
paper focuses on the critical aspect of web scraping within the context of dynamic
web pages. We explore key methods and libraries for handling dynamic content,
including BeautifulSoup, LXML, and Selenium. We assess their performance and
present statistical significance. The experimental results reveal a notable disparity
in the performance of web scraping libraries. Specifically, when compared to the
widely used Beautiful Soup and Lxml, Selenium library exhibits superior efficiency,
utilizing 90% less data, and reducing processing time by 70%. These results high-
light the significance of library selection in web data extraction research and offer
useful information for practitioners looking for the best web scraping solutions.

Keywords:Web Scraping, dynamic web page, BeautifulSoup, LXML, XPath, HTML
DOM, Selenium, performance evaluation, statistical validation.

in: Advancements in Communication and Systems. Ed. by Ashish Kumar Tri-
pathi and Vivek Shrivastava. Computing and Intelligent Systems, SCRS, In-
dia., 2023, pp. 241–252. doi: https://doi.org/10.56155/978-81-955020-7-3-22

1. Introduction

In the ever-evolving landscape of the World Wide Web, the demand for dynamic web content continues
to grow, as users seek richer and more interactive online experiences. Dynamic web pages, characte-
rized by their ability to update and modify content in real-time, have become integral to the modern
web ecosystem.

This paper highlights the crucial aspect of web scraping, examining fundamental methods and libraries
developed to tackle challenges in dynamic content. We explore the time efficiency of web extraction
methods, focusing on Python libraries like BeautifulSoup, Selenium, and lxml, specifically for dynamic
web pages. We will assess the efficiency of these libraries by examining parameters such as time con-
sumption, memory usage, and data consumption. The internet serves as a rich reservoir of extensive
data for various purposes, such as business intelligence, competitive analysis, sentiment assessment,
agriculture and food economics, bioinformatics, and understanding human behavior on social media,
among other data-centric applications [1]. Approximately 70% of the content available on the web is
presented in an unorganized and challenging-to-handle structure.

2. Literature Review

Web scraping is the extraction of data or information from internet websites. Several research studies
and surveys [2–5, 14, 15, 17] have been undertaken on Web scraping tools and applications that are
available in many various forms and with many distinct characteristics. A Web scraper can be created
using tools and frameworks made available by several programming languages, or it can be a more ro-
bust desktop application or a website extension.

Abundant online storage holds both structured and unstructured data, creating a challenge of sifting
through web data for specific inquiries or research topics. This shift, outlined in [6], emphasizes the
need to navigate the vast web data landscape. These methods are indispensable for cost-effective and
frequent data collection.

Several web scraping methods have been explored in various research studies, including conventional
copy and paste [1], Regular Expression (Regex) [7], Hypertext Markup Language Document Object
Model (HTML DOM)[8], and XPath [9].

The methods of Web Scraping evolved together with the World Wide Web. Not all listed methods were
available at the beginning [10]. There are two most used techniques, DOM, later on allowed the HTML
Parsing technique to evolve to DOM Parsing. Second example is Application Programming interfaces
(APIs). This technique is the youngest on the list, the growth of available content APIs is dated from
2005. According to ProgrammableWeb.com the number of APIs has grown within 8 years from 0 to
10302 [11].

2.1 Manual Scraping

Manual scraping is still an option in specific situations. These situations are: when the amount of data
is minimal, when the data being scraped does not require a repetitive task, when setting up automated
scraping would take longer than the data collection itself. Possibly security measures or specific charac-
teristics of the website do not allow automated methods [7].

2.2 HTML DOM

The HTML Document Object Model (HTML DOM) serves as a standard for the retrieval, modification,
addition, or removal of HTML elements [12]. It achieves this by defining objects and properties for all

Kaajal Sharma, Gautam M Borkar

242

2

HTML elements, along with methods for accessing them. In this context, all HTML elements are
treated as objects, and the programming interface comprises the methods and properties associated
with each object. For HTML parsing, websites typically lack convenient formats like .csv or .json files.
Analyzing HTML structure allows identification of recurring elements, enabling the use of similar-
patterned pages as data sources through scripting or web scraping tools[10].DOM parsing represents
an advancement in HTML Parsing, JavaScript and Cascading Stylesheets (CSS) both make considera-
ble use of DOM. Targeting particular areas of web pages is now possible incorporating DOM.

2.3 XPath

XPath plays a central role in XSLT (Stylesheet Language Transformation) and serves as a means to
navigate elements and attributes within XML documents[13]. XPath is a language for selecting nodes in
XML and HTML documents, emphasizing its capability to express location paths. A location path in-
volves at least one step location to pinpoint specific nodes. The simplest path selects the document's
root node using a single slash ("/") symbol, akin to the Unix system file hierarchy. XPath, although de-
manding a more structured webpage than DOM, offers an equivalent ability to target specific segments
in HTML format.

2.4 APIs

Application programming interfaces (APIs) require an application to be a communication partner. APIs
are so frequently referred to as machine-readable interfaces rather than human-readable ones. API
Directories offer their own API, which enables users to look for API Sources in their database. An API
Endpoint receives a response from the server in response to a typical HTTP request. Each API has its
own options and specifications. The request has an option to specify the format of the response. JSON
is the API communication format that is most frequently used [10] [17].

3. Web Scraping Libraries

3.1 BeautifulSoup

BS4 offers basic techniques for interacting with the DOM paradigm and can parse both HTML and
XML documents. Two arguments are included in a BeautifulSoup object, web page's source and the
parser .The various parsers, such as html parser, lxml, and html5 lib, can be modified to work with the
BeautifulSoup.html object. A class named HTMLParser that is included with parser's default Python
installation can be used as a simple HTML and XHTML parser [8].

3.2 LXML

The lxml XML toolkit is a Python binding for the C libraries libxml2 and libxslt. It stands out because it
combines the speed and thoroughness of these libraries' XML features with the simplicity of a native
Python API, which is mostly compatible with but better than the well-known ElementTree API. The
most recent version of lxml is compatible with all versions of Python and supports XPath [13] for ex-
tracting tree information. XPath can be used to extract the content fragments into a list.

3.3 Selenium

Selenium, a versatile web scraping tool, automates interactions with websites, facilitating data extrac-
tion from dynamic, JavaScript-intensive pages. Known for emulating user-like interactions, it offers
features like cross-browser compatibility, dynamic page handling, user interaction emulation, and sup-
port for multiple languages, parallel execution, headless browsing, and continuous updates. It inte-

Advancements in Communication and Systems

243

3

grates with webdriver for advanced interactions, ensuring cross-platform compatibility with extensive
community and documentation support. These features make Selenium a powerful and flexible choice
for web scraping, particularly for websites with dynamic content and complex user interactions [16].

4. Libraries and Combinations Utilised

We compared three systems—BS4 with Selenium, lxml with Selenium, and standalone Selenium—all
utilizing Selenium for navigating and interacting with dynamic web pages due to its remarkable versa-
tility.

4.1 BS4 with Selenium

Beautiful Soup (BS4) when used alongside Selenium becomes a potent tool for dynamic web scraping.
This combination is highly effective for websites with ever-changing content. It is shows benefit in
hhandling dynamic content, automates complex navigation and pagination.

4.2 LXML with Selenium

Lxml sets itself apart from Beautiful Soup (BS4) through its superior parsing speed and structured data
processing capabilities, rendering it ideal for demanding tasks. Lxml adheres to a more rigorous tree-
based parsing approach. This distinction, complemented by Selenium's interaction capabilities, facili-
tates high-speed, structured data extraction from dynamically loading web pages.

4.3 Standalone Selenium

In dynamic web scraping, Selenium automates user actions such as clicks, form submissions, and scrol-
ling, synchronizing with dynamically loaded elements. This interaction-driven approach ensures com-
prehensive data extraction from dynamic content websites. Selenium is memory-efficient, allowing
automatic script execution without excessive memory usage for lengthy or complex scraping tasks. Ad-
ditionally, it streamlines data transfer and automates extraction by facilitating data exchange between
the web browser and the scraping script.

5. Methodology

In this section we will discuss the executed method for comparing the three libraries.
as shown in Figure 1.

Kaajal Sharma, Gautam M Borkar

244

Fig

1. Initialise Selenium webdrivers
Selenium webdrivers are browser-specific components th
browsers, which enable to simulate user interactions with different browsers, automating tasks like
clicking, form-filling, and data extraction.
Necessary Python Libraries were used to import
 from selenium import webdriver
Appropriate WebDriver is downloaded,
WebDriver Path is set, Instantiate the WebDriver Object
driver = webdriver.Chrome(executable_path="/path/to/chromedriver")

2. Get URL load it in on Chrome
Following the initialization of the webdrivers, the designated
obtained, and Selenium utilized the Chrome webdriver to automate the process of opening the specified
webpage URL.
Specify the Target URL (Set the URL of the webpage to be loaded within a variable.)
target_url = "https://www.example.com"
Invoke the get() method on the Chrome webdriver instance, passing the target URL as an argument.
This triggers Selenium to launch a new Chrome browser instance and
driver.get(target_url)

Figure 1. Steps for web scraping process

rivers
specific components that enable it to automate interactions with web

to simulate user interactions with different browsers, automating tasks like
filling, and data extraction.

were used to import
mport webdriver

Appropriate WebDriver is downloaded, ensuring compatibility with chosen browser and its version
is set, Instantiate the WebDriver Object

driver = webdriver.Chrome(executable_path="/path/to/chromedriver")

n Chrome
Following the initialization of the webdrivers, the designated website link intended for scraping was
obtained, and Selenium utilized the Chrome webdriver to automate the process of opening the specified

e URL of the webpage to be loaded within a variable.)
target_url = "https://www.example.com"

method on the Chrome webdriver instance, passing the target URL as an argument.
This triggers Selenium to launch a new Chrome browser instance and navigate to the specified URL.

4

to automate interactions with web
to simulate user interactions with different browsers, automating tasks like

compatibility with chosen browser and its version

link intended for scraping was
obtained, and Selenium utilized the Chrome webdriver to automate the process of opening the specified

method on the Chrome webdriver instance, passing the target URL as an argument.
navigate to the specified URL.

Advancements in Communication and Systems

245

5

3. Choose tags of data fields to be extracted
Upon the webpage's complete loading, an examination and analysis of the necessary video elements for
scraping were conducted. This investigation revealed that each video was distinctly segmented into
separate video blocks, each bearing unique index values, while sharing identical HTML tag references
including class name, id name, and title tag.
Page Structure Examination is done to understand the structure of the web page using browser devel-
oper tools (e.g., Chrome DevTools) to inspect the webpage's Document Object Model (DOM). Analyze
the HTML structure to pinpoint the specific tags encapsulating the desired video data fields.

Locator Identification to select appropriate locator strategies to uniquely identify target elements
ID: Use find_element_by_id() for elements with unique IDs.
Class Name: Use find_elements_by_class_name() for elements sharing a class.
Tag Name: Use find_elements_by_tag_name() for broad element types.
XPath: Use find_elements_by_xpath() for complex navigation and conditional searching.
CSS Selector: Use find_elements_by_css_selector() for flexible and concise targeting.
Technical Observations in Context:
Unique Index Values: Each video block possesses a distinct index, potentially employable for identifica-
tion via XPath or CSS selectors.
Shared Tag References: HTML class name, ID name, and title tag are common among videos, necessi-
tating careful locator strategies to isolate individual blocks.
Targeting by Class Name: video_blocks = driver.find_elements_by_class_name("video-block")
Extracting Title Attribute: video_title = video_block.get_attribute("title")
Dynamic Content: If content loads asynchronously, employ explicit waits or visibility checks.
Element Hierarchies: Understand parent-child relationships within the DOM for accurate targeting.
Attribute Extraction: Utilize get_attribute() to retrieve specific attribute values.
Text Content Extraction: Use text property to extract text content within elements.

4. Enter number of videos to be scraped
After determining the data to be scraped, the specific count of videos to be extracted was also deter-
mined in order to restrict the number of iterations required for the loop. In our research, we gathered
data from more than 10,000 video blocks during the scraping process.
We have used Python's input() function to solicit the desired number of videos from the user,

num_videos_to_scrape = int(input("Enter the number of videos to scrape: "))
for i in range(num_videos_to_scrape):
 # Perform video scraping actions within the loop

5. Initialize parameters to be calculated
Parametric Values which were to be calculated to compare the three library combinations were initia-
lized. These parameters encompass metrics like the total time taken for the scraping process, the
process time involving CPU and Kernel resources for computing the output, system memory usage dur-
ing the process, and the volume of data bytes exchanged throughout the entire operation.

6. Execute script to deal with endless scrolling
A fully loaded YouTube page provides a finite number of videos or video blocks for data extraction. To
avoid the manual effort of scrolling to the page's end, we deployed a Selenium script to automate this
process once the initial page had been thoroughly scraped for all available data.

7. Scrape required number of videos
 The fully loaded page is downloaded in HTML format using Selenium. Subsequently, it is processed
within the relevant parsers. A loop iterates until all the videos scheduled for scraping have been
processed, consistently updating the scraped data in a Data Frame.

Kaajal Sharma, Gautam M Borkar

246

6

8. Store scraped data in excel files
The Data Frames containing the scraped data were exported to Excel for in-depth data analysis, with a
primary focus on assessing data integrity and identifying any redundancy.
We integrated the pandas library for DataFrame manipulation and file export using
import pandas as pd
df = pd.DataFrame(video_data)
df.to_excel("scraped_data.xlsx", index=False)
df.to_excel("existing_file.xlsx", index=False, mode="a", startrow=10)
df.to_excel("scraped_data.xlsx", sheet_name="Videos")

Additionally for data validation we can employ pandas' validation techniques to ensure data quality and
consistency. For file compression formats like ZIP for storage optimization can be used. And alternative
data storage methods databases (e.g., SQLite, PostgreSQL) for enhanced data management and analy-
sis capabilities can also be used.

6. Results Analysis

In the course of our comparative study, we conducted comprehensive research and analysis of four key
parameters, as discussed in this section.

6.1 Overall Time

Overall time refers to the total time required to perform the entire web scraping procedure which in-
cludes multiple stages, such as sending requests to web servers, receiving and parsing web content,
extracting specific data, processing and organizing the collected information, and finally storing it in
the desired format.

𝑇𝑇𝑇 = 𝑇 + 𝑇௦ + 𝑇௦ (1)

where,
TTT = Total Time Taken
Treq = Time Taken send HTTP Request
Tresp= Time Taken to send HTTP Response
Tscrap= Time Taken to scrap through received Response

Table 1. shows the overall time taken by the libraries. The last row shows the average of all values, with
LXML being the faster one.

Table 1. Overall Time Measurement Results

No. of
iterations

No. Video Blocks
Scraped

BS4 with
Selenium

(sec)

LXML with
Selenium

(sec)

Standalone
Selenium(sec)

1-5 600 8.86 5.08 9.12
6-10 1350 17.19 7.73 17.72
11-15 2100 18.92 11.57 26.90
16-20 2850 24.30 14.95 35.83
21-25 2820 29.68 20.39 45.55

 9720 19.79 11.94 27.02

Advancements in Communication and Systems

247

7

Figure 2. Average Results of Overall Time Measurement

As can be seen in Figure 2. upon recording the total time required for scraping over 10,000 video
blocks and graphically representing the data, it was determined that utilizing lxml with Selenium pro-
vides the most efficient approach for dynamic web scraping, wherein time constraints are considered.

6.2 Process Time Utilized

Process time is the duration consumed by the Central Processing Unit (CPU) and Kernel to execute the
web scraping procedure. It encompasses the time spent on computational tasks, data parsing, and in-
formation extraction.. It plays a crucial role in resource management and determining the overall effec-
tiveness of the web scraping process.

𝑇௦௦ = 𝑇௨௦ + 𝑇௦௬௦௧ (2)

where:
Tprocess= Total Process Time
Tuser = Total time spent executing the actual code in user space
Tsystem = Total Time spent on the operating system kernel on behalf of the application

Table 2. below shows the process times taken by the libraries during the parsing through over 10000
videos. The last row shows the average of all the values, with Selenium coming out as the fastest com-
paratively.

Table 2. Process Time Measurement Result

No. of
iterations

No. Video
Blocks Scraped

BS4 with
Selenium
(sec)

LXML with
Selenium
(sec)

Standalone Se-
lenium(sec)

1-5 600 6.44 2.98 1.453
6-10 1350 14.25 5.60 1.53
11-15 2100 15.90 9.00 2.2
16-20 2850 20.94 11.94 3.05
21-25 2820 26.15 16.58 5.132

 9720 16.73 9.22 2.675

0

10

20

30

40

50

600 1350 2100 2850

Overall Time

BS4 with Selenium (sec) LXML with Selenium (sec)

Kaajal Sharma, Gautam M Borkar

248

8

Figure 3. Average Results of Process Time

As can be seen in Figure 3. Standalone Selenium exhibited the most optimal process time.

6.3 Memory Utilized

This pertains to the amount of RAM (Random Access Memory) consumed during the execution of web
scraping operations. It reflects the memory allocation and utilization by the script, libraries, and the
web browser automation tool (e.g., Selenium)

𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑒𝑑 = 𝑀ଵ −𝑀 (3)

where,
MPk1 = Peak Memory Recorded before execution of code lines
MPk2 = Peak Memory Recorded after execution of code lines

Table 3. shows memory used to store the data during each method's execution for web scraping.

Table 3. Memory Usage Measurement Results.

No. of
iterations

No. Video
Blocks
Scraped

BS4 with Se-
lenium (bytes)

LXML with
Selenium
(bytes)

 Standalone
Selenium (bytes)

1-5 600 233578 344862.4 347760.6
6-10 1350 197150.2 226848.4 359055.8
11-15 2100 183749.8 537070.4 192669
16-20 2850 225882.8 251270.2 300123
21-25 2820 200195.75 457740 416771.5
 9720 514.7 887.98 788.59

0

5

10

15

20

25

30

600 1350 2100 2850 2820

Process Time

BS4 with Selenium(sec) LXML with Selenium(sec)

Standalone Selenium(sec)

Advancements in Communication and Systems

249

9

Figure 4. Average Results of Memory Usage Measurement

As can be seen in Figure 4, BS4 utilizes lesser memory.

6.4 Data Bytes Used

This measures the data exchanged between the web scraping script and targeted websites, encompass-
ing requests and responses. Accurate measurement and optimization of data bytes usage assess overall
efficiency and cost-effectiveness in web scraping operations.

𝐷𝑎𝑡𝑎𝐵𝑦𝑡𝑒𝑠𝑈𝑠𝑒𝑑 = (𝐵𝑦𝑡𝑒𝑠𝑅𝑒𝑐𝑣ଵ + 𝐵𝑦𝑡𝑒𝑠𝑆𝑒𝑛𝑡ଵ) − (𝐵𝑦𝑡𝑒𝑠𝑅𝑒𝑐𝑣 + 𝐵𝑦𝑡𝑒𝑠𝑆𝑒𝑛𝑡) (4)

where,
BytesRecv0 = Number of Bytes Received before execution of code lines
BytesSent1= Number of Bytes Sent before execution of code lines
BytesRecv1= Number of Bytes Received after execution of code lines
BytesRecv0 = Number of Bytes Sent after execution of code lines

Table 4. shows the data byte exchanged by the request library and the URLs, while accessing the HTML
for each webpage. The last row gives us the average values.

Table 4. Data Usage Measurement Results

No. of
iterations

No. Video
Blocks Scraped

BS4 with
Selenium
(bytes)

LXML with
Selenium
(bytes)

Standalone
Selenium
(bytes)

1-5 600 39083619 38737464 391270
6-10 1350 73428297 68549221 526857
11-15 2100 106894048 98539870 822412
16-20 2850 138107954 128780070 1247569
21-25 2820 166133655 156229809 1779807
 9720 252274 236414 2269

0
100000
200000
300000
400000
500000
600000

600 1350 2100 2850 2820

Memory Used

BS4 with Selenium(bytes) LXML with Selenium(bytes)

Standalone Selenium(bytes)

Kaajal Sharma, Gautam M Borkar

250

10

Figure 5. Average Results of Data Usage Measurement

As can be seen in Figure 5. Standalone Selenium gave very brilliant results as compared to other com-
binations, after aggregating data of over 10,000 scraped videos.

6.5 Average Comparisons

The table below displays the average of process time measurement, overall time measurement, data
usage measurement and memory usage measurement results of bs4, Selenium and LXML.

Table 5. A comparison of each parameter's average value

Parameters BS4 with
Selenium

LXML with
Selenium

Standalone
Selenium

Overall Time
(in sec)

19.79 11.95 27.03

Process Time
(in sec)

16.74 9.23 2.68

Memory Usage
(in Bytes)

514.67 887.9 788.556

Data Usage
(in Bytes)

252274. 236414.9 2269.52

7. Conclusion

In this experiment, using Python libraries, data from a dynamic website is extracted and compared to
determine how long each takes to complete. Following key conclusions were reached based on the find-
ings of the trials.

Using Selenium with LXML yields superior performance in terms of process time and overall time,
whereas Selenium combined with BS4 demonstrates better performance in overall memory usage. Se-
lenium alone provides moderately balanced results compared to BS4 and LXML.

For beginners and simpler HTML, opt for Beautiful Soup and Selenium. Experienced developers deal-
ing with complex XML or seeking high performance should consider Lxml and Selenium.

To improve the preceding approach, more parameters may be included while testing, mending, or
combining procedures to address their shortcomings.

0

50000000

10000000

15000000

20000000

600 1350 2100 2850 2820

Data Bytes Used

BS4 with Selenium(bytes) LXML with Selenium(bytes)

Standalone Selenium(bytes)

Advancements in Communication and Systems

251

11

References

[1] Nigam, H., Biswas, P.:From Web Scraping to Web Crawling. In:Choudhary, A., Agrawal, A.P., Logeswaran,
R., Unhelkar, B.(eds) Applications of Artificial Intelligence and Machine Learning. Lecture Notes in Electrical
Engineering, vol. 778, Springer, Singapore(2021).

[2] Laender, A.H.F., Ribeiro-Neto, B.A, da Silva, A.S, Teixeira, J.S.: A brief survey of web data extraction tools.
ACM SIGMOD Rec 31(2):84, (2002).

[3] Singrodia, V., Mitra, A., Paul, S.:A review on web scraping and its applications. In: 2019 International Con-
ference on Ccomputer Communication and Informatics (ICCCI). Coimbatore, Tamil Nadu, India, pp 1–6,
(2019).

[4] Vanden Broucke, S., Baesens, B.: Practical Web scraping for data science. 1st edn. Apress, Berkeley, CA,
(2018).

[5] Castrillo-Fernández Q.:Web scraping: applications and tools. European Public Sector Information Plat
form Topic Report No.2015/10, (2015).

[6] Boehmke, B. C. (2016). Data wrangling with R(Use R!). Dayton, OH: Springer International, (2106).
[7] Sirisuriya, D.: A Comparative Study on Web Scraping. Proceedings of 8th International Research Conference,

KDU, pp. 135–140,(November 2015).
[8] Uzun, E.Yerlİkaya.T, Kirat,O.: Comparison Of Python Libraries Used For Web Data Extraction. Journal of

the Technical University - SofiaPlovdiv branch, Bulgaria, Fundamental Sciences and Applications, Vol. 24,
(May2018).

[9] Grasso.G., Furche.T., Schallhart, C.:Effective Web Scraping with OXPath. WWW '13 Companion, Pages 23–
26,(2013).

[10] Draxl,V.: Web Scraping Data Extraction from websites. BS Thesis, University of Applied Sciences, (2018).
[11] Berlind,D.:APIs Are Like User Interfaces--Just With Different Users in Mind. at: https://www. Programmab-

leweb . com, (2015).
[12] W3C:What is the Document Object Model?, Available: https://www.w3.org/TR/WD-

DOM/introduction.html,(2016).
[13] XML and XPath., https: // www.w3schools.com /xml/ xml_xpath.asp, last accessed 2023/10/24
[14] Saurkar, A.V., Pathare, K. G., Gode, S.:An overview on web scraping techniques and tools. IJFRCSCE, 4(4),

363-367, (2018).
[15] Lotfi,C., Srinivasan,S., Ertz,M. and Latrous, I.: Web Scraping Techniques and Applications: A Literature

Review. SCRS Conference Proceedings on Intelligent Systems, SCRS, India, pp. 381-394, (2022).
[16] Bale,A.S.,Ghorpade,N.,Rohith,S.,Kamalesh,S.,Rohith,R.,Rohan,B.S.:Web Scraping Approaches and their

Performance on Modern Websites ,ICESC IEEE Xplore Part Number: CFP22V66-ART; ISBN: 978-1-6654-
7971-4, (2022).

[17] Glez-Peñna,D.,Lourenco,A.,López-Fernández,H.,Reboiro-Jato,M,and Fdez-Riverola, F.: Web scraping tech-
nologies in an API world Briefings in Bioinformatics, 15(5), 788–797, 2013

Kaajal Sharma, Gautam M Borkar

252

