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Decentralized finance is a revolutionary change in the financial system, using blockchain
technology to build a diverse and open network of financial services. By cutting out mid-
dlemen, DeFi promotes financial equality and reaches out to more people. Smart contracts
can complete transactions without the need for traditional banks to lower costs and im-
prove efficiency in lending, borrowing, trading, and yield farming activities. The proposed
research compares four leading DeFi lending protocols: AAVE, MAKERDAO, COMPOUND,
and VENUS Finance. We have used Long Short-Term Memory (LSTM) neural networks to
analyze historical data and measure key parameters, such as lending and borrowing rates,
Total Value Locked (TVL), Market Capitalization, and token price dynamics. We found
that AAVE and COMPOUND exhibit similar mean rates but AAVE offers more precise
predictions. MAKER provides potentially higher returns but with a higher degree of un-
predictability. VENUS, despite its precise predictions, yields the lowest returns due to its
lower mean lending rate. Overall, the approach enhances the understanding of the dynam-
ics within the DeFi ecosystem, helping stakeholders to make informed decisions. Index
Terms—Decentralized, Blockchain, LSTM, Time Series Analysis.
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1 Introduction

Blockchain technology has spawned a new form of financial services called decentral-
ized finance (DeFi), which provides open, trustless, and permissionless access to various
financial products [1]. DeFi has garnered considerable attention from both institutional
and retail investors due to its potential to transform the traditional financial landscape.
Lending protocols are one of the most important and popular DeFi applications, as they
enable users to lend and borrow cryptocurrencies and digital assets with attractive inter-
est rates and without intermediaries [2]. Lending protocols play a crucial role in the DeFi
ecosystem by facilitating liquidity provision and interest generation for both lenders and
borrowers.

The DeFi space is constantly evolving, and the competition among lending protocols
is fierce. Some of the leading protocols are AAVE, COMPOUND, VENUS Finance, and
MAKERDAO, each with its own distinctive features, governance models, and token eco-
nomics. DeFi users and investors need a thorough understanding of the performance
and risk factors of these protocols to make informed decisions about where to invest
their assets [3]. There has been limited research on integrating machine learning or deep
learning techniques into DeFi lending protocols. This research paper provides such an
understanding by conducting a comparative study and performance analysis of these
four lending protocols.

This paper aims to address the urgent need for a comprehensive understanding of
the performance and risk factors of four leading DeFi lending protocols: AAVE, COM-
POUND, VENUS Finance, and MAKERDAO. To achieve this goal, we have used Long
Short-TermMemory (LSTM) neural networks, a state-of-the-art deep learning technique
for time series data analysis, to forecast and evaluate key performance indicators of these
protocols, such as interest rates, token prices, liquidity utilization, governance participa-
tion, and more. LSTM models are effective in predicting and understanding complex
sequences, making them a useful tool for assessing the performance of DeFi protocols
that involve time-dependent data [4]. We have analyzed key parameters such as lend-
ing and borrowing rates, TVL (Total Value Locked) value, Market Capitalization, and
token price dynamic. We aim to provide valuable insights into the performance and risk
characteristics of these protocols, as well as their potential for long-term sustainability.
This research will provide useful guidance for both DeFi enthusiasts and institutional
investors who want to explore the rapidly growing DeFi landscape.

2 Methods

2.1 Dataset Description

The dataset serves as a very crucial foundation for the insights. The dataset was not ran-
domly taken or assembled, rather, it underwent a meticulous process of data collection,
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curation and refinement. Some key principles of this process were:

• Data Collection Source: In this research, data have been collected from various
credible DeFi platforms, such as DeFiLIama, CoinGecko, and CoinMarketCap as
no single platform is sufficient to provide all the required data [5-7]. Distinct
time frames have been designated for the respective datasets under analysis, with
the temporal boundaries as follows: AAVE (03/12/2020 to 11/08/2023), MAKER
(03/12/2020 to 11/08/2023), COMPOUND (16/07/2020 to 11/08/2023), and VENUS
(31/10/2021 to 11/08/2023).

• Data Validation: To spot and correct anomalies, outliers, or incorrect data points,
a thorough validation process was put in place. Careful data cleaning was used to
fix any data inconsistencies.

• Manual Review: For the purpose of ensuring the data accuracy and applicability,
our dataset underwent manual review.

Table 1: A snapshot of the dataset

START END OPEN HIGH LOW CLOSE VOLUME MCAP TVL

11-08-2023 12-08-2023 66.9641 66.9641 65.3395 65.9525 128607245.9 958314811.6 2889435253

10-08-2023 11-08-2023 67.3022 69.0488 66.8022 67.0256 141533157.3 976190392.6 2781729962

09-08-2023 10-08-2023 66.3546 67.9084 65.8749 67.4406 137584647.2 966238600.9 2806623077

08-08-2023 09-08-2023 64.9758 66.8669 64.6616 66.1994 141752268.3 952561693.3 2832729978

07-08-2023 08-08-2023 66.061 66.977 63.3895 64.8849 149256791.4 945923789.4 2816843138

06-08-2023 07-08-2023 64.4217 66.0573 64.1478 65.8081 132846567.9 945577324.5 2829416506

A snapshot of the dataset is presented in Table I.

• START: Represents the start date of the period.

• END: Represents the end date of the period.

• OPEN: Price at which a particular asset started trading at the beginning of the
period.

• HIGH: Highest price at which the asset is traded during the period.

• LOW: Lowest price at which the asset is traded during the period.

• CLOSE: Price at which the asset was trading at the end of the period.
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• VOLUME: Number of assets that were traded during the period.

• MCAP: MCAP or Market Capitalization, represents the aggregate market value
of a specific cryptocurrency or token. It’s determined by multiplying the current
market price of each coin or token by the total number of coins or tokens in circu-
lation.

• TVL: This stands for Total Value Locked, a metric in DeFi that measures the total
value of assets that are currently being staked in a specific protocol [8].

2.2 LSTM model

LSTM is a variant of recurrent neural network (RNN) architecture, specifically engi-
neered to overcome the challenges faced by conventional RNNs in retaining and rec-
ognizing long-term dependencies in sequential data. Designed to counteract the vanish-
ing gradient issue, LSTM incorporates memory cells equipped with self-gating mecha-
nisms, enabling the network to selectively retain or discard information across lengthy
sequences. This feature renders LSTMs particularly adept at tasks related to time se-
ries data, natural language processing, and speech recognition. The architecture’s pro-
ficiency in preserving contextual information over prolonged durations, along with its
ability to tackle vanishing and exploding gradient problems, has been established as a
formidable instrument in the sphere of deep learning.

Due to LSTM’s aptitude for time series data, it serves as our primary modeling frame-
work. LSTM excels in capturing sequential dependencies and patterns in time series data,
enabling accurate predictions based on past observations. Its unique ability to remember
and incorporate information from earlier time steps distinguishes it, allowing the cap-
ture of temporal dynamics and dependencies in time series data. This is crucial in DEFI
lending, where interest rates are influenced by past trends, current market conditions,
and user behavior. LSTM’s efficacy in handling time series data, particularly in DEFI
lending rates, informed our deliberate choice over alternative modeling techniques.

Table 2: Descriptive statistics for the dataset

METRIC AAVE COMPOUND MAKER DAO VENUS
High Value 664.96 909.33 6244.44 16.26

Low Value 51.11 26.67 508.17 16.26

ACTUAL MEAN 189.76 191.47 1757.18 18.17

Table II outlines the statistical measures of DEFI protocols, including the high, low,
and mean values of their performance. It provides insights into the variability and aver-
age performance of these protocols, presenting ranges between the highest and lowest
recorded values, as well as the central tendency depicted by the mean values.
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2.3 LSTM Model Performance

The use of LSTM neural network models to forecast rates within each DEFI lending
protocol forms the basis of our analysis. These recurrent neural network-based models
are remarkably good at capturing the complex temporal dependencies present in time
series data.
Model Architecture: The LSTM model consists of a series of linked layers, each of

which plays a particular part in the modelling process.

• Starting with an input layer created to ingest sequences of historical lending rate
data, the model is introduced. Each sequence in this case has 200 time steps, giving
a significant historical context.

• LSTM Layers: Our model makes use of a number of LSTM layers to accurately
capture sequential dependencies. The layers of the LSTM are set up as follows: 100
units make up the first LSTM layer, which is set up to return sequences. As a result,
it retains the data’s temporal context, which makes it ideal for modelling long-
distance dependencies. Sequences are also returned by the second LSTM layer,
which has 50 units, making it easier to extract intermediate patterns from data.
Sequences are not returned by the 50-unit, final LSTM layer. Instead, it condenses
the data from the earlier layers into a representation to get it ready for the last
prediction step.

• The output layer, which consists of a single neuron, is in charge of forecasting the
lending rate for the future.

• The mean squared error (MSE) is used as the loss function. The squared difference
between the model’s projections and actual lending rates is measured by MSE.

• The ‘Adam’ optimizer, a popular option for training neural networks, is used to
optimise the model. Adam can handle a range of optimisation issues because it
adjusts the learning rate during training.

Table 3: Parameters of the LSTM model

Layers Type Output shape
layer_1 LSTM (None, 200, 100)
layer_2 LSTM (None, 200, 50)
layer_3 LSTM (None, 50)
dense_1 Dense (None, 1)

Table III shows the parameters of the LSTM model.
Training and Testing: The performance evaluation of our model is dependent on the

training and testing phases:
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• Training: Historical rate information from each DEFI protocol is used to train the
model. To reduce the mean squared error, it accomplishes this by repeatedly ad-
justing its internal parameters.

• Testing: Using a different dataset, the model’s performance is assessed after train-
ing. The lending rate data in this testing dataset are new to the model and were
not present during training. We can evaluate the predictive accuracy of the model
by contrasting its predictions with the actual lending rates in this testing dataset.

3 Results

3.1 Predective Accuracy

Our LSTM model’s main goal is to predict High Value (highest price at which the as-
set is traded during the period) with accuracy. We divided the data into training and
testing segments. The Percentage of division for training and testing data is 75% and
25%. With its multiple LSTM layers and recurrent architecture, it is capable of capturing
complex patterns and temporal dependencies, which are crucial for comprehending and
forecasting DEFI High Values. To implement LSTM we used TensorFlow and Keras li-
braries [9-10]. While implementing LSTM we used 180 epochs to get optimal result. Sev-
eral important performance metrics, such as Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Standard Deviation, and Symmetric Mean Absolute Percentage
Error (SMAPE), are used to measure the precision of our forecasts [11]. These matrices
are represented in Table IV which are crucial in enabling users and investors to make
informed decisions.

3.2 Comparative Analysis

Our comparison of the DEFI lending protocols reveals the following distinct trends and
patterns:

• Comparable mean rates between AAVE and COMPOUND show a similar range of
interest rates for lenders. AAVE, on the other hand, typically provides predictions
that are more precise and stable with lower RMSE, MAE, and standard deviation
values.

• With a noticeably higher mean rate than the average, MAKER stands out and may
offer lenders greater returns. Its higher RMSE,MAE, and standard deviation values,
on the other hand, highlight its greater variability and unpredictability.

• While VENUS offers the most precise and stable predictions of rates, it also has
the lowest mean lending rate, which means a relatively lower return for lenders.
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Table 4: Error values on the Testing Dataset

METRIC AAVE COMPOUND MAKER DAO VENUS

ROOT MEAN SQUARED ERROR 197.96 283.66 1908.42 16.26

MEAN ABSOLUTE ERROR 166.12 212.65 1669.63 12.42

STANDARD DEVIATION 107.84 187.93 924.50 10.55

MEAN ABSOLUTE PERCENTAGE ERROR 199.32 199.16 199.92 196.22

These findings highlight the distinctive qualities and performance nuances of each
DEFI lending protocol, giving users and investors useful information to help them make
decisions about the DEFI lending market.

We can improve our comprehension of DEFI lending protocols and predictive model-
ing by addressing these constraints and investigating these new lines of inquiry, which
will ultimately help users, investors, and other stakeholders in the dynamic world of
decentralized finance.

4 Discussion

This paper presents a thorough comparison and analysis of four major DeFi lending
protocols: AAVE, COMPOUND, VENUS Finance, and MAKERDAO. We used LSTM neu-
ral networks to measure and forecast their key performance indicators. The main goal
was to give useful information about their performance and risk levels, as well as their
long-term sustainability potential.

We discovered several important insights about these DeFi lending protocols. AAVE
and COMPOUND had similar average interest rates for lenders, with AAVE having more
accurate and stable forecasts. MAKERDAO had higher average rates, which could mean
higher returns, but it also had more variation and uncertainty. VENUS Finance had the
most accurate and stable forecasts but the lowest average lending rate, which couldmean
lower returns for lenders. Statistical tests confirmed the differences in average lending
rates and predictive accuracy, highlighting the influence of platform policies, user de-
mand, and general market trends. Our research followed a systematic approach for eval-
uating and comparing the performance indicators of these DeFi lending protocols, using
carefully selected datasets and LSTM models designed for time series data.

While this paper provides valuable insights into the performance and risk factors of
these four leading DeFi lending protocols, there are ways to improve and extend the re-
search. Including more DeFi lending protocols and more variables in the dataset could
provide a wider view of the DeFi ecosystem’s behavior and better support decision-
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making. Improving deep learning models and exploring other machine learning tech-
niques could lead to more precise and reliable forecasts. Developing real-time monitor-
ing and prediction systems that can adjust to the fast-changing DeFi environment would
be very useful for investors and users. Conducting deeper risk analysis, including factors
like smart contract vulnerabilities and liquidity risks, can help to understand the risks
associated with DeFi lending protocols better. Investigating user experience factors and
the governancemodels of these protocols could offer additional insights into their appeal
to participants and long-term viability.

(a) AAVE (b) COMP

(c) MAKER (d) VENUS

Figure 1: Graphical representation of Actual, Training and Testing Data

In Figure 1, the graphs exhibit the model performance on the training and testing data.
The X-axis represents the time stamps in days whereas the Y-axis represents the price
of a given DeFi protocol. The blue line indicates the actual data, the green line indicates
the training data and the orange line indicates the testing data [8].
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