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Crop classification is a fundamental task for agriculture monitoring and management to
optimize resource allocation and ensure food security. With the advancement of Artificial
Intelligence(AI) Algorithms and Remote Sensing Technology, improved accuracy and effi-
ciency in crop classification processes can be attained. This paper presents a comprehen-
sive review of the various Remote Sensing technologies and Al algorithms used for crop
classification. First, we will discuss the role of various remote sensing techniques used for
capturing imagery, including Unmanned Aerial vehicles (UAVs) and satellites, followed by
various fusion technologies for integration images from different platforms. Second, vari-
ous models and techniques implemented in the literature, including both machine learning
(SVM, Random Forest, Decision Tree) and deep learning (CNNs, RNNs, and Neuarl Net-
works) have been reviewed. Third, as conclusion , this paper finds that CNN-based mod-
els utilizing hyperspectral and mutitemporal fused imagery from various remote sensing
sources are prevalent in the classification field. This paper has highlighted key challenges in
areas such as data availability, scalability, model generalization, and integration of multi-
source imagery. Additionally, it offers potential solutions and proposes various methods
and techniques for further exploration in crop classification.
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1 Introduction

Agriculture has always held immense importance in sustaining human society. From
being the backbone of any economy to providing food security and self-sufficiency, agri-
culture is essential for global wellbeing and a sustainable future. Farmers and other stake-
holders must decide wisely on several linked issues to maintain and improve agricultural
production. crop classification is crucial for many reasons, including yield prediction [1],
growth monitoring, fertilizer application, weed management [2], disease control [3], etc.
Traditionally, field surveys and other methods were used for collecting ground data for
crop identification, which was inconvenient, laborious, and time-consuming. The task
becomes more difficult if the area under consideration significantly increases, say at the
district or state level. Remote sensing technologies like satellites, UAVs and other aerial
photographs etc. have enabled capturing of vast areas without actual intervention. These
technologies have enabled monitoring of crops over large agricultural areas and assess-
ing crop health, which is vital for food security and sustainable farming practices.

Machine learning and deep learning algorithms have enabled processing and analyz-
ing vast amounts of remote sensing data efficiently, identifying patterns and features.
These tools have improved accuracy in classifying crop types, detecting diseases, and
predicting yields. The ability to learn from data makes deep learning algorithms suitable
for crop classification task and provide a scalable solution for modern agriculture.

The aim of this paper is to perform a bibliometric analysis of application of satellite or
UAV imageries for crop classification using different Machine Learning and deep learn-
ing techniques. Further, we examine the changing research landscape that combines
artificial intelligence and image processing to manage large agricultural areas. Differ-
ent remote sensing technologies for agricultural purposes will be explored, along with
various Al algorithms for classification.Section 2 provides an in-depth overview of the
existing literature on the remote sensing techniques in this field. Section 3 delves into the
comparison of the various deep learning and Machine Learning Algorithms employed
in crop identification has been done, along with the Evaluation Metrics utilized to assess
their performance. In the subsequent Section 4, as discussion we will present different
challenges and research gaps observed during the study followed by the scope of future
work that can be undertaken.

2 Literature Review of Remote Sensing Technology in Crop
Classification

An immense development in the field of agriculture has been seen during the last two

decades and has been made possible due to remote sensing technologies. Remote Sens-

ing Technologies provide non-destructive and non-intrusive way to capture imagery for
agriculture monitoring and provide finer details across wide areas over a period of time.
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The availability of high spatial, temporal, spectral, and radiometric resolution imagery
from satellites has significantly enhanced its application scope in agriculture by improv-
ing precision and accuracy.

For classifying crops over an area, image data is being obtained from satellites, UAVs,
manned devices, IoT devices, autonomous robots and smartphones, etc. Recent years
have also seen an increase in the use of integration techniques for fusing images from
these sources. The availability of different types of sensors enables RS technologies to
provide rich features for precision agriculture. High-resolution remote sensing images
can offer detailed texture information. Spectral and temporal information from images
can be utilized to extract features for classification.Several work have addressed the use
of remote sensing technologies in agriculture. Satellites provides global coverage, captur-
ing the image over a wider area while UAVs range is very much limited when compared
to satellites. But in terms of spatial resolution, UAVs have better spatial resolution as the
images captured by them have higher ground-spatial distance (GSD). Also, in terms of
availability, UAVs have proven to be a more portable, handy, flexible, and near real-time
option if coverage area under consideration is limited. However, spectral resolution of
the satellites is significantly better, as most of satellite imagery has atleast 4 bands (Red,
Green, Blue and Near-IR). Both UAVs and satellite imageries have their own features
and challenges e.g both are impacted by the weather conditions, including clouds, cloud
shadows, wind, rain, humidity etc.

The integration of remote sensing techniques with machine learning and artificial in-
telligence has enhanced their ability to analyze large and complex datasets. This has fur-
ther helped in making more accurate predictions about crop yields and resource needs.
Across all the studies for the task of crop identification, data has been obtained from var-
ious sources including UAVs (Unmanned Aerial Vehicles), satellites (both Landsat and
Sentinel), aircraft, hand-held devices like cameras, and other wall-mounted devices. Dif-
ferent types of images may have varying levels of complexity and distinct features that
can impact the accuracy of a classification model. For example, images with clear and
well-defined objects may be easier to classify accurately compared to images with clut-
tered backgrounds or ambiguous shapes.

Additionally, the diversity and variability of images in a dataset can also affect classi-
fication accuracy. A dataset with a wide range of images representing different classes
can help improve the model’s ability to generalize and make accurate predictions on un-
seen data. Therefore, it is important to consider the types of images being used when
evaluating the performance of a classification model and to ensure that the dataset is
representative of the real-world scenarios the model will encounter.

To initiate a classification process, the acquired dataset needs to undergo preprocess-
ing. This preprocessing step involves cleaning the data, handling missing values, scaling
or normalizing the features, encoding categorical variables, and splitting the data into
training and testing sets. These steps are essential to ensuring that the data is in a suit-
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able format for the classification algorithm to learn from and make accurate predictions.
Broadly analysing, the classification process is carried out into two phases :

Feature Learning and Classification. Feature learning involves Convolution function,
followed by pooling. Classification involves flattening, Fully Connected layer and Soft-
max layer. Now, let us have a look at how the use of these remote sensing technologies
is being done for crop classification.

2.1 UAV Imagery in Crop Classification

Unmanned Aerial Vehicles (UAVs), popularly known as drones, have become an indis-
pensable tool in surveying applications across various fields such as land surveillance,
geographic studies, agriculture, and security. The use of UAVs in agriculture has revolu-
tionized the process of crop monitoring and identification through high-resolution im-
ages. UAVs are increasingly being used to gather valuable data for precision agriculture,
including crop and plant recognition. Basics components of UAVs include the airframe or
physical structure, propulsion system, control system and the communication systems.
Both fixed wing(the Arator 5b of the company XMobot) and rotary wing drones ( the
Phanton 4 from the DJI manufacturer) are available for the surveying purpose. Rotary-
wing are preferred for precision agriculture due to lesser cost, more area coverage in
shorter time given its low maneuverability, searching for more detailed or larger images
of the area to be monitored, autonomous flights without the need for human interaction
for either take-off, landing or battery recharging [4]. Control system of UAVs include
the stabilisation during flight, navigation system equipped with GPS and communica-
tion system include the control and data transmission with the ground centre.

Although, many studies have used satellites in the field of crop classification [5], [6],
[7], [8]. But they have their own drawbacks/ limitations, like low spatial and temporal
resolution, that impact the data quality and predictions. Unlike remote sensing based on
satellites or manned aircraft, UAVs can capture images at low altitudes. UAVs, therefore,
can provide data with high spatial, spectral and temporal resolution [9] and enable ac-
curate assessment. Due to their agility, they can cover large areas swiftly by providing
real-time data. Other applications of UAVs in agriculture include the identification of ce-
real crops, precision agriculture, weed management, pests and diseases management, as
well as nutrients and fertilizer requirements. Additionally, they are being used to assess
physical characteristics under changing environmental conditions to identify favorable
genotypes and phenotypes.

Now a days, various types of cameras and sensors are being used on Unmanned Aerial
Vehicles (UAVs)platforms. The most commonly used sensors are Red-Green-Blue (RGB)
cameras which capture images in three primary wavebands: red, green, and blue [10],
[11], [12]. They are preferred due to their low cost, lightweight design, flexibility, and
ease of data analysis. Multispectral sensors capture images in multiple narrow spectral
bands beyond the visible spectrum, i.e., red, green, blue, and near-infrared (NIR). Multi-
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spectral data is useful in assessing crop health, detecting stress, and identifying specific
vegetation characteristics. RGB imaging is unable to capture spectral information be-
yond the visible spectrum, which is important for characterizing chemical and physical
proprieties of a target. Hyperspectral sensors capture images in numerous narrow and
contiguous spectral bands. Unlike multispectral cameras, hyperspectral cameras provide
detailed information across a wide range of wavelengths and are valuable for precise crop
classification [13] [9] and assessing crop health. Thermal sensors detect infrared radia-
tion emitted by objects and help monitor temperature variations in crops, identify stress,
and assess water availability [14].

To achieve the goal of timely classification, with low operating cost, high flexibility,
and the ability to provide real-time data, UAV-borne hyperspectral systems have become
an important data source for remote sensing-based agricultural monitoring. The images
captured are pre processed using various techniques like radiometric calibrations, ge-
ometric correction [15], ortho-rectification, mosiacking [16], [11], labelling etc. before
being used as input for classification model. Preprocessing steps vary on the basis of
dataset being used and learning model being used for classification. These can be fur-
ther explored with different techniques to optimize performance and accuracy. Some of
the common techniques used in preprocessing have been summarized in Figure 1.

Preprocessing
UAV Imagery

Noise
Reduction

Data
Augmentation

Data
Normalisation

Geometric
Correction

Image
Enhancement

Radiometric
Calibration

Median
Filtering

Gaussian
Smoothing

Morphological
Dilation

Histogram
Equalization

Figure 1: Preprocessing of UAV images

However, utilizing UAVs presents certain challenges such as vegetation diversity, soil
patterns, terrain variability, processing high-resolution data, flight permissions and poli-
cies, and occasionally high equipment costs. Researchers and policymakers rely on satel-
lite data for making informed decisions and efficient resource management. Synoptic
View and Multi-Temporal Coverage provided by satellites during the growing season
make them ideal for evaluating crop dynamics and detecting abnormalities. There are
numerous open-source tools such as QGIS (Quantum GIS) and GRASS GIS software that
aid in UAV data processing and analysis with advanced features. Commercial options
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like ENVI, Pix4D, Agisoft Metashape, and cloud-based platforms such as Google Earth
Engine and Microsoft Azure Al also provide services for analyzing geospatial data from
UAV imagery. Moreover, integrating various UAV-derived data types (e.g., RGB, multi-
spectral, LIDAR) with deep learning methods can improve classification accuracy. Some
of the datasets, like WHU-Hi [13],WeedMap [18] are available publicly.

Studies have proved that high classification accuracy have been achieved with UAV
data due to its high resolution and the ability to capture detailed spectral and spatial
information. [19] reported an accuracy of 89% using SegNet and FCN-AlexNet on UAV
images.A number of ML and DL techniques have been applied on UAV data for crop clas-
sification, demonstrating the versatility of these methods. [20] used MobileNetv2 feature
extractor and ConvLSTM model for classification, achieving an accuracy of 97.43%. In-
tegration of UAV data with advanced DL models like CNNs, RNNs, and attention mech-
anisms has shown promising results. Using an attention-based recurrent convolutional
neural network, [11] achieved an overall accuracy of 92.80%. Studies has proved that
the UAVs imagery has proved effective in case of multicrop classification [11], trees
canopy [12], forest and other sturcture also [10].When it comes to monitoring crops
at various growth stages, UAVs provide flexibility in data capture by enabling frequent
and focused data collection [11] and [21]. The integration of UAV data with advanced
models like CNNs, RNNs, and attention mechanisms has shown promising results. For
example, [11]) achieved an overall accuracy of 92.80% using an attention-based recurrent
convolutional neural network.

2.2 Satellite Imagery in Crop Classification

Satellites have been utilized for agricultural monitoring since the 1970s. The LANDSAT-
1 and LANDSAT-2 satellites, MODIS, Sentinel-1,Sentinel-2 [6], and GaoFen [5] , SPOT6
[22]are some of the widely used satellites in agricultural programs. The growing avail-
ability of data from recurring and long-term satellite observations has prompted a strong
desire by the agricultural community to use satellite data in creating crop maps over large
geographic areas. The utilization of satellites has transformed global agriculture. Their
extensive perspective, multitemporal coverage, and cost-efficiency have rendered them
as indispensable tools in various field including agriculture.

Like UAVs, the satellites are equipped with a variety of sensors that allow researchers
to monitor crop types, crop health, and other conditions from space. Multispectral sen-
sors used in satellite like Sentinel-2, LandSat-2, and Gao Fen, capture data across multiple
spectral bands, facilitate the analysis of vegetation health, crop types, and land cover. Hy-
perspectral Sensors such as Hyperspectral Imaging Spectroradiometer (HSI) and EnMAP
(Environmental Mapping and Analysis Program) help differentiate subtle differences in
crop types, soil properties, and stress conditions. Synthetic Aperture Radar (SAR) used in
Sentinel-1 operates independently of the availability of sunlight and can penetrate cloud
cover to capture images [23]. Thermal infrared sensors like MODIS (Moderate Resolution
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Table 1: Research Work on Crop Classification using UAVs Imagery

Article Imagery Crop Type Work Done Result
Source
[13] Hyper Three Regions of | CNN with Conditional Random | OA - 93.95%
spectral study: LongKou: 9 | field Classifier used for crop | Kappa-0.9290
UAV classes classification and model com- | AA-92.69%
HanChuan : 16 pared with Benchmark CNN,
HongHu :23 SVM(Support Vector Machine),
FNEA-OO and SVMFMC.
[29] High- To identify weeds | Improved faster R-CNN and com- | AA- 95.3%,
resolution in two crops Pea | pared with YOLO-V3 and K- | OA-94.73%
UAV and Strawberry Nearest Neighbour (KNN), SVM | Kappa-0.89.
imagery
[11] Multi- Chinese  cabbage, | Attention-based Recurrent Con- | overall accuracy-92.80%
Temporal carrot, leaf mustard, | volutional neural network and | Kappa-0.9206
Un- Turnip.  potherb. | compared with SVM, RF, and
manned spinach, kohlrabi MLC
Aerial
Vehicle
imagery
(RGB) for
time  pe-
riod (Sep-
Nov 2019)
[10] UAV Banana, Maize, | Deep Neural Network VGG16 | OA-0.86 Precision-0.86 Recall-
Images Legume, Forest, | model for feature extraction 0.86 Kappa-0.82 F1 score-0.86
Structure and other
categories
[12] UAV 3 species of palm | ResNet-18 incorporated into | Average Accuracy-87.8%
images treesinthe Amazon | the DeepLabv3+ architecture.
Forest region [encoder module-convolutional
block- Atrous Spatial Pyra-
mid Pooling (ASPP)- softmax
classifier]
[17] UAV Rice and Corn SegNet and FCN-AlexNet and | accuracy - 89%
images Adam Optimizer Inference Speed-0.7s
[20] UAV (Banana, Maize, | The technique employs adap- | Accuracy-97.43 Precision-
Imagery and Legume), two | tive bilateral filtering for image | 89.02 Recall 85.03 F score
additional non- | preprocessing, MobileNetv2 fea- | 86.74
cropland cover | ture extractor with Bayesian op-
types (Forest and | timization for parameter opti-
Structure) mization, and convolutional long
short-term memory (ConvLSTM)
model for crop classification.
[21] UAV  Im- | 6 varieties of weeds | 1. Hyperspectral data and Step- | Use of fewer bands and high
agery in sorghum fields wise Linear discriminant analy- | spatial resolution improves
(Hyper- sis (SLDA) used to identify the | weed classification
spectral most significant spectral bands
and Mul- for discriminating weeds from
tispectral) sorghum. 2. Multispectral images
(2013 and and object-based image analysis
2014.) (OBIA) to detect weeds
[27] UAV  Im- | Beet, Parsley, and | 1. Vision Transformer (ViT) | Highest accuracy of 99.8% in
ages (High | Spinach along with | model wusing  self-attention | plant classification.
Resolution | weed paradigm for plant classification | Stability of ViT on variation of
) of weeds and crops. the dataset size asserted.

2. Compared with EfficientNet
and ResNet.
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Imaging Spectroradiometer) [8] and Landsat 8 Thermal Infrared Sensor (TIRS) measure
thermal radiation emitted by objects and can easily assess crop stress, water availability,
and temperature variations. LIDAR (Light Detection and Ranging) data can be used to
complement optical and radar imagery. Airborne LiDAR systems are capable of captur-
ing detailed elevation information, aiding in monitoring crop health, canopy structure
analysis, and 3D modeling. Table 2 summarises some of the work in the area of crop

classification using of satellite imagery.

Table 2: Research Work on Crop Classification using Satellite Imagery

Article Imagery Crop Type Work Done Result
Source
[5] Satellite Five area in China | 1.Classification approach for | The  Cropformer  model
imagery with multiple | multi-scenario (Full-season crop | worked at par with other
:GaoFen- crops( 20); classification, in-season crop | models in terms of accuracy.
I(RGB, classification, few-sample crop | However, the model can learn
IR) Time classification) generalized features using
Period 2. Two-step classification: Trans- | limited labeled data and per-
(Mar- Sep) former (to capture the features) + | formed good in multi-scenario
Convolution and compared with | classification.
RF, CNN, SIFT BERT
[6] Satellite Corn crop 1. Positive Unlabelled (PU) classi- | Triplet Loss Siamese Network
imagery: fication using SVM. performed best with Accuracy-
Sentinel 2. DL based NN with 4 Convolu- | 97.47%
- 2 com- tional layers F1-weighted-97.47%
bined 3. Triplet Loss Siamese network | F1-Neg-95.77%
with agri- to learn sample representations. F1-Pos- 98.19%
culture 4. Contrastive Learning with | MCC- 0.94
machine data augmentation (10
operation .
[7] Satellite 8 Crops including | 1.Sparse Autoencoder andneural | Overall Accuracy- 91.0%(1st ex-
Data maize, wheat, soy- | network for fine-tuning. periment)
beans, sunflower, | 2. Translated satellite data into | 85.9%(2nd experiment)
winter barley, rape- | unified hyperspace for analysis.
seed, sugarbeet and
peas.
(8] Satellite corn, cotton, soy, | 1. Multimodal deep learning | The proposed model reduced
Imagery spring wheat, win- | classification solution with | the prediction error by 60%
(Multi- ter wheat, and | two-stream architecture that | compared to traditional meth-
spectral barley combines spatial-spectral and | ods.
and Multi- phenological properties. 2. Out performs the other
temporal) 2. fusion of spatial and temporal | methods in terms of accuracy

streams is explored using late
fusion techniques, improving
the accuracy.

3. Hyperparameter optimization
is performed using grid search
on validation dataset.

and F1-score.
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2.3 Integrating UAVs and Satellite Data for Improved Crop Insights

Many studies have used the fusion of data from more than one source like combining
UAV and Satellite [8] and [15], fusion of data from different satellites [23], SAR (Synthetic
Aperture Radar) and optical imagery [24] and [25], Multispectral and SAR imagery [22].
In [22], used a data fusion method, DTW(Dynamic Time Warping) to extract high simi-
larity time series feature index. [23] have demonstrated processing UAV imagery involv-
ing pixel-level fusion, feature-level fusion, and decision-level fusion. Pixel-level fusion
combines multi-sensor input data through compression and dimensionality reduction
methods. Feature-level fusion merges extracted features from various sensors to create
a multi-source feature stack. Decision-level fusion integrates the classification results of
individual sensor features according to predetermined rules or decisions [6]. Utilizing
UAVs and satellites also addresses the problem of acquiring data over large agricultural
regions for efficient crop monitoring. Fused data has shown significantly improved accu-
racy compared to the original UAV data [16] [15]. Data fusion from different sources like
optical, SAR, UAVs provide complementary information like spectral reflectance, texture,
moisture content and enhance the ability to discriminate between crop types [26]. This
information enables the extraction of more robust features. Further, data fusion reduces
the restriction on capturing images due to atmospheric conditions like cloud, rain, hu-
midity and wind. Optical imagery may be impacted by cloud cover, however SAR can
penetrate through the clouds, thus avoid the temporal gaps in capturing the images [22].
Temporal variability, caused by factors such as the growing season, weather changes,
or disease infections, can lead to changes in crop appearance, making it a challenging
feature. With timeseries data from Sentinel-1 and Sentinel-2 satellites has significantly
enhanced the precision in capturing crop dynamics [23].

3 Deep Learning and Machine Learning Techniques in Crop
Classification

Al algorithms have proven to be effective tools for crop classification, providing en-
hanced accuracy, automated feature extraction, scalability, adaptability to various condi-
tions, and innovative applications. Deep Learning algorithms, particularly CNNs (Con-
volutional Neural Networks) have emerged as the state-of-the-art method for computer
vision applications since they have proven to be effective tools for image processing
tasks and have produced more accurate outcomes.Their expertise in extracting intricate
patterns and characteristics from remote sensing data leads to enhanced accuracy in
recognizing and categorizing crop varieties [13]. CNNs have the ability to capture both
local and global patterns in image and are less computationally inexpensive [10]. A CNN
architecture consists of mainly three stacked layers namely Convolutional layer and the
Pooling layer (for recognizing the patterns in the images) followed by fully connected
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Table 3: Research Work on Crop Classification using fused imagery

Article Imagery Crop Type Work Done Result
Source

[32] Fusing 10 categories | 1. UAV and Sentinel-2A images | Fused images achieved higher
UAV  im- | including rice, | fused using Gram-Schmidt trans- | classification accuracies, rang-
ages and | corn, soybean, | formation for crop distribution | ing between 10.58% and 16.39%
Sentinel buckwheat mapping.

-2A data 2. Random Forest Algorithm for
classification.

[16] The  Fu- | honeysuckle, 1. Data fusion of UAV images and | 1.Improved classification accu-
sion of | maize, peanut and | satellite multispectral images is | racy of the fused image com-
Satellite tree, Roads and | performed. pared to the original UAV im-
and  Un- | buildings 2. Compared the performance of | age (OA was over 80%)
manned Support Vector Machine (SVM), | 2. ANN method with the high-
Aerial Ve- Artificial Neural Network (ANN) | est accuracy followed by SVM
hicle(UAV) and Maximum Likelihood (ML) | and ML.

Imagery on using the fused images.

[23] Fusion of | Banana, Maize, | 1. Impact of using optical and | 1. SAR datasets outperform op-
Sentinal- and Legume, two | SAR data and their fusion on | tical datasets and optical-SAR
1 and | additional non- | crop classification accuracy eval- | combination  outperformed
Sentinal-2 crop land cover | uated. 2. Two fusion approaches: | single sensor predictions.

Data types (Forest and | feature stacking and decision fu- | 2. The feature selection strat-
Structure) sion. 3. Investigated the influ- | egy (group-wise forward
ence of feature Selection, parcel | feature selection - gFFS) did
size and optical data availability | not improve the accuracy.
on classification and accuracy. 3.
Random Forest (RF) used for clas-
sification.

[24] Sentinel soybean, corn, | 1. Impact of using optical-SAR | 1. 3D UNet achieved the high-
SAR- sorghum, Sudan | data fusion, coupled with virtual | est accuracy. (OA = 0.912 for
optical grasss witch grass constellation and 3-D deep learn- | SAR(OA = 0.937 for optical
fusion Three varieties | ing network on crop classifica- | data, SAR/optical fused data
(Apr-Oct of weeds (foxtail, | tion accuracy evaluated. (OA =0.941)

2018, ragweed, and | 2. Compared the performance of | 2 fusion of multi-temporal
Columbia) | cocklebur) DL networks 3D UNet, SegNet, | SAR and optical data improves
2D Unet and RF. accuracy.

[25] Satellites Maize, Soyabean | 1. DL approach using optical | 1. OA - 91.7%

Sentinel- and other crops and SAR data for reducing the | Kappa coefficient -85.7%

1 and temporal gaps in data capture. F1 Score maize- 93.7%,
Sentinel-2: 2. Ensemble learning framework | Soybean- 92.2%, Wheat- 90.9%
Optical combining different DL models | 2. Best performing model
and SAR to balance the imbalanced class | 3D-ConvSTAR

data distribution.

3. Fused multitemporal Sentinel-
1 polarimetric feature and
Sentinel-2 Surface Reflectance
Data.
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Table 4: Research Work on Crop Classification using fused imagery

Article Imagery Crop Type Work Done Result
Source

[22] SPOT6 Paddy rice 1. Data fusion method to extract | Decision Tree(DT) performed
Satel- high similarity time series fea- | best with
lite  and ture index through integration of | OA- 94.71%, Kappa-0.81; and
Sentinel- MS and SAR images. without DTW OA- 93.26%,
1A (Multi- 2. Dynamic Time Warping to | Kappa-0.76; proving the effec-
Temporal integrate different image data | tiveness of Fusion method
Data Fu- sources, data of different lengths,
sion in MS and generation information with
and SAR time characteristics.
Images 3. Comparison done on SVM,

Neural Networks, and Decision
Tree with and without DTW in-
dex.

[31] LandSat Corn, Soybean, Bar- | 1. Classification workflow using | The model achieved an over-
Imagery ley, Spring Wheat, | Deep Neural Networks (DNN) | allaccuracy exceeding 82% and
Dry Beans, Sugar | based on LandSat imageries, his- | can achieve better accuracy in
Beets, And Alfalfa. torical crop maps and ground | multiple time of growth cycle
measurements. in large farmlands

2. Created processing workflows
to automate the preprocessing,
training, testing, and postpro-
cessing steps.

3. Tested the hybrid solution on
new images.

layer (for classification). However, Convolutional Neural Networks only consider local
spatial information and can often get stuck in local optima, leading to gaps or isolated
areas in the classification maps. To overcome this, [13] proposed the deep convolutional
neural network with a conditional random field classifier (CNNCRF) framework. A deep
CNN was used to extract detailed spectral and spatial features, while a Mahalanobis dis-
tance boundary constrained CRF model was implemented to integrate spatial-contextual
information and reduce isolated regions in the classification maps.The CNNCRF model
achieved an overall accuracy of 93.95%, 98.91% and 93.74% over the three regions under
study. The model performed better on the dataset compared to SVM and Benchmark-
CNN.

Various other Deep learning models used across the studies include DeepCNN, Neu-
ral Networks, DeepNet, YOLO LSTM(Long Short-'"Term Memory Networks [20], Trans-
formers [27], U-Net, etc and pretrained model like SegNet, ResNet, VGG16. Machine
algorithms include SVM, k-Nearest Neighbors, Random Forest. Apart from the above
algorithms, transfer learning has been applied where the acquisition of a large labeled
dataset is impractical and also speeds up the learning phase of the model. Crop Segmenta-
tion requires extensive labeled datasets to train ML models. In [20], transfer learning has
been used on drone images to leverage pre-trained models and optimize hyperparame-
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ters to enhance the accuracy of crop classification algorithms. In [10], pretrained VGG16
model was used for feature extraction and a DNN with fully connected layer, a drop out
layer followed by Adam Optimiser for classification. The model shows good accuracy
for banana, forest and maize but accuracy is reduced for legumes due to high interclass
heterogeneity. A multimodal deep learning approach that combines spatial-spectral and
phenological characteristics has been utilized for crop type identification in the study
by [8]. The proposed solution used a two stream architecture : spatial stream with CNN
and temportal stream with LSTM and reduced the prediction error by 60%. In [28], De-
cision Trees have been used for multicrop recognition using high spatial and temporal
NDVI (Normalised Difference Vegetation index)signatures extracted from multispectral
imagery and enhanced overall accuracy and kappa value. NDVI values are crucial in
early-to-mid session for crop classification. [22]. Ensemble techniques that combine di-
verse classification models, such as Decision Trees, Random Forest, Naive Bayes, and
Support Vector Machines (SVM), are used to implement crop classification. Ensemble
techniques have been demonstrated in [25], wherein multi-temporal Sentinel-1 polari-
metric features are integrated with Sentinel-2 surface reflectance data, has outperformed
alternative techniques and achieved the highest mean F1 scores demonstrating the effec-
tiveness in enhancing the accuracy.

Broadly, the image classification task for crop identification has been categorized into
two approaches:Object-based Classification [29] and Pixel-based Classification [23]. To
deal with the challenge of a limited data set and variable target sizes, optimized Faster
R-CNN was used for identification of weeds and crops in strawberry and pea field for
precision agriculture sprayer [29]. YOLOv3, an object based classification model attained
a better average weed identification accuracy compared to developed Faster RNN devel-
oped. YOLOV3 predicts an objectness score for each bounding box using logistic regres-
sion [30]. The general workflow for any Al classification algorithm is depicted in Figure
2.

oY '\_ e e £ Y Y
Model
: Selection
Understanding patd (;:E: nsing Feature *Deep Learning Crop Model
Dataset . Extraction Algorithms Classification optimization
Preprocessing sMachine
Learning
| | Algorithm
. 8 \ / \ J . 4

Figure 2: Workflow for a Crop Classification Model

To evaluate a crop classification model, it’s essential to use appropriate metrics to
assess its performance. The choice of metrics depends on the context, purpose, and rela-
tive importance of the errors. Several metrics have been used for the evaluation of deep
learning models to assess their effectiveness. Some of these metrics are confusion ma-
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trix, accuracy, precision, recall, F1 score and kappa value. The confusion matrix gives a
detailed insight of true positives, true negatives, false positives, and false negatives. It
may be considered the fundamental tool for understanding the model’s effectiveness and
performance. F1 is the harmonic mean of precision and recall and is generally used for
imbalanced datasets.

4 Conclusion

After conducting the study of the articles on remote sensed data for crop classifica-
tion, it can be concluded that deep learning techniques which use CNNs as base model
are used for crop classification. However, when classification is performed on tempo-
ral data or fused data, LSTM based models are preferred. The Random Forest machine
learning model has also demonstrated high classification accuracy compared to other
models. To overcome the limitation of labeled datasets, data augmentation techniques,
transformer models, multimodal fusion and transfer learning have proven to be effec-
tive. For mapping larger areas, agriculture imagery from various sources like satellites,
UAVs(Unmanned Aerial Vehicles), Manned Aircraft, high-resolution cameras, etc. can be
fused to provide high spatial, spectral, and temporal resolution data and have proved to
boost the classification accuracy. Hyperspectral images capture data across hundreds of
narrow spectral bands, thus provide better data for extraction of features(NDVIL, EVI etc.)
when compared to RGB sensors. For capturing multitemporal data, UAVs and satellites
have both proven to be reliable sources. Factors like spatial resolution, spectral resolu-
tion, temporal resolution, patch size, sample quality and image annotation have been
found to impact the accuracy.

While reviewing the literature, it has been found that crop segmentation has still many
areas that need to be further explored. Multiple crop classification is yet to be worked
upon further. Some crops have similar visual characteristics that make them difficult
to distinguish [10]. Scalability is yet remains a less explored area in crop segmentation.
There is scope of working on evaluating the scalability of model to larger areas for mul-
ticrop classification [5] and [25]. Further research could explore the generalization of
models trained on a specific region or crop type to incorporate domain adaptation. Sev-
eral studies have indicated the challenges posed by the scarcity of labeled datasets and
its impact on the robustness and generalization capabilities of the model [20]. The study
by [13] emphasizes the importance of training and testing time as the efficiency of the
model.

Future work is suggested on data fusion and sensor integration techniques [10], [15]
for exploring the optimal spatial resolution to enhance the accuracy. Extracting robust
features from spectral information with the help of multispectral and hyperspectral im-
agery can enhance accuracy. Variabliability in timeseries data and impact of different
growth stages, environmental conditions like moisture content [11] is another crucial
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work to be undertaken for further study. To improve the robustness and accuracy of
models, especially for minority crops and in complex cropping systems can be key area
of future work. Studies [31] indicate that the models still remain underfit and needs inte-
gration with more high-performance computational platforms. Other ensemble methods
or fine-tuned models trained on diverse datasets may offer a solution. Deploying these
models in real-world scenarios to monitor vast agricultural areas for efficient inference
and real-time analysis necessitates the creation of a lightweight model, a distributed com-
putation system, and integration with edge Al In summary, this study will help different
researchers and policymakers understand different remote sensing technologies and in-
tegration with DL and ML techniques to use them in crop monitoring, yield prediction,
crop health monitoring, early disease detection, finding compatible crops, crop cycles,
etc.
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