
The Role of Chaos Engineering in DevOps
for Software Robustness
Nihar Ajay Mhatre, Mugdha Shailendra Kulkarni, Fatima Ali
Symbiosis Centre for Information Technology, Symbiosis International (Deemed Univer-
sity), Pune, India
Corresponding author: Nihar Ajay Mhatre, Email: nmhatre2541@gmail.com

This research paper explores the evolution of software development methodologies, begin-
ning with DevOps, a collaborative approach that integrates development and operations
to streamline workflows and enhance software delivery. Method: Building upon DevOps,
the paper explores the emergence of DevSecOps, an extended paradigm that integrates se-
curity throughout the development lifecycle. Within the realm of DevSecOps, the paper
further examines the role of Site Reliability Engineering (SRE), emphasizing the critical in-
tersection of security and reliability. Site Reliability Engineering (SRE) principles, rooted in
Google’s operational expertise, focus on maintaining scalable and highly reliable systems.
Results: Expanding on these foundations, the research investigates the incorporation of
Chaos Engineering into DevSecOps practices. Chaos Engineering, involving deliberate and
controlled experiments to uncover vulnerabilities, is introduced as a proactive measure to
increase resiliency and antifragility in software systems. Conclusion: By systematically in-
jecting faults and simulating real-world disruptions, organizations can fortify their systems
against unforeseen challenges, contributing to developing more robust and secure software
ecosystems in the ever-evolving technological landscape.

Keywords: DevOps, DevSecOps, Chaos Engineering, Site Reliability Engineering, CI/CD.

2024. In Mukesh Saraswat & Rajani Kumari (eds.), Applied Intelligence and Comput-
ing, 9–17. Computing & Intelligent Systems, SCRS, India. DOI: https://doi.org/10.
56155/978-81-955020-9-7-2



1 Introduction 

The collaborative DevOps methodology, which replaced traditional approaches, represented a 
paradigm shift in the rapidly evolving software development industry. The software delivery industry 
was revolutionised by eliminating barriers, promoting collaboration, and automating processes by 
merging operations and development, or DevOps. Organisationshave become more cognizant of the 
need for security concerns as a critical part of the development lifecycle, which is a result of the 
advantages of improved agility and faster time-to-market. This realization led to the evolution of 
DevSecOps, an expanded paradigm that seamlessly integrates security across the software development 
process. According to DevSecOps, security should be addressed frequently and early on since it 
considers security an essential rather than an afterthought [1]. 
 
Building on the foundations of DevSecOps, this paper examines the vital role of Site Reliability 
Engineering (SRE) inside the DevSecOps framework. SRE, which bridges the gap between development 
and operations, is a discipline created by Google that focuses primarily on system performance, 
scalability, and reliability. The goals of DevSecOps align with SRE ideas, which heavily emphasise 
automation, monitoring, and incident response to maintain highly reliable and secure systems. Digital 
infrastructures are built robustly thanks to the strategic approach of strengthening software ecosystems 
against potential vulnerabilities and disruptions by integrating SRE principles inside DevSecOps [2]. 
The focus of the inquiry gradually moves to Chaos Engineering, a disruptive force essential to the 
DevSecOps paradigm. Chaos Engineering provides a controlled way of experimentation that enables 
one to examine how a system responds in unfavourable conditions by intentionally introducing faults 
and interruptions. Organizations can proactively uncover vulnerabilities by intentionally creating 
chaos, assessing the effect on security measures, and enhancing incident response procedures. 
DevSecOps and Chaos Engineering work together to improve the ability to build resilient systems that 
can develop and adapt when faced with challenges. Purposefully inducing controlled chaos measures 
the ability of a system to adapt, develop, and harden [3]. 
 
This in-depth analysis aims to clarify the complex links between DevSecOps, Site Reliability 
Engineering, and Chaos Engineering. In an era of dynamic dangers in digital landscapes, this all-
encompassing approach reflects a strategic change towards proactive security and reliability solutions. 
To foster a culture of resilience, adaptability, and continuous improvement, the research attempts to 
demonstrate how companies may successfully integrate these approaches into their software 
development lifecycles. By understanding and leveraging the relationships between these paradigms, 
organizations can effectively handle the complexities of modern software development and ensure that 
security and reliability are essential and deeply ingrained in their digital activities [3] [22]. 

2 Review of Literature  

System testing can be done dynamically with the help of chaos engineering. The main concept is to 
examine how a system behaves under difficult conditions to identify flaws before they manifest in real-
world scenarios. Chaos engineering was developed in response to the inherent complexity of modern 
networked systems. It accepts that mistakes are inevitable and that planning and anticipating them is 
important. Chaotic engineering is a new field that has emerged to support cloud resiliency. Chaotic 
engineering is the process of evaluating distributed systems to boost confidence in their ability to 
withstand disruptions in production. Chaotic engineering requires experiments to validate or invalidate 
hypotheses [4, 5]. 

Nihar Ajay Mhatre, Mugdha Shailendra Kulkarni, Fatima Ali

10



3 Methodology 

3.1 Preliminary Research 

In this preliminary research, a search string containing the keywords “DevOps,” “DevSecOps”, “Chaos 
Engineering”, “Site Reliability Engineering”, “CI/CD”, 
conducted on IEEE Xplore, Scopus, and Google Sc
unearth a wealth of literature that sheds light on the intricate interplay between these methodologies. 
The goal is to identify critical insights, emerging trends, and gaps within the discourse on how th
practices collectively contribute to bolstering system resiliency and nurturing antifragility. The 
collection of works deals with DevSecOps and Chaos Engineering from peer
application of Systematic Review. Research notes were m
 
The inclusion criteria were limited to the following keywords: “DevOps”, “DevSecOps”, “Challenges”, 
“Implementation”, and “Security”. A paper was not considered for evaluation if it did not directly relate 
to DevOps, Security, or a DevOps component like continuous integration.
 
For the Exclusion criteria, if the paper's title did not contain the relevant keywords or the content was 
unrelated to the software systems, the paper was not considered for the review

3.2 Selection of Work(data) using PRISMA Approach

To execute this Literature Review, PRISMA was used to report the required references in this literature 
review. This approach provides a transparent and structured framework, ensuring a rigorous selection 
process for relevant studies. Beginning with an exhaustive search, our methodology involves carefully 
screening and evaluating identified articles based on predefined inclusion and exclusion criteria. This 
stringent process will help us filter out studies that alig
research. By adopting PRISMA, we aim to uphold methodological integrity, 
meaningful insights from the selected literature, contributing to a nuanced understanding of how the 
amalgamation of DevSecOps and Chaos Engineering augments resiliency and antifragility in 
contemporary software development practices. 

 

Figure

y Research  

In this preliminary research, a search string containing the keywords “DevOps,” “DevSecOps”, “Chaos 
ability Engineering”, “CI/CD”, “Observability”, and “implementation” was 

conducted on IEEE Xplore, Scopus, and Google Scholar databases. Leveraging these sources, we aim to 
unearth a wealth of literature that sheds light on the intricate interplay between these methodologies. 
The goal is to identify critical insights, emerging trends, and gaps within the discourse on how th
practices collectively contribute to bolstering system resiliency and nurturing antifragility. The 
collection of works deals with DevSecOps and Chaos Engineering from peer-reviewed journals in the 
application of Systematic Review. Research notes were made once a relevant subset was found.

The inclusion criteria were limited to the following keywords: “DevOps”, “DevSecOps”, “Challenges”, 
“Implementation”, and “Security”. A paper was not considered for evaluation if it did not directly relate 

Security, or a DevOps component like continuous integration. 

For the Exclusion criteria, if the paper's title did not contain the relevant keywords or the content was 
unrelated to the software systems, the paper was not considered for the review [4]. 

(data) using PRISMA Approach 

To execute this Literature Review, PRISMA was used to report the required references in this literature 
review. This approach provides a transparent and structured framework, ensuring a rigorous selection 

or relevant studies. Beginning with an exhaustive search, our methodology involves carefully 
screening and evaluating identified articles based on predefined inclusion and exclusion criteria. This 
stringent process will help us filter out studies that align most closely with the focal points of our 
research. By adopting PRISMA, we aim to uphold methodological integrity, minimize
meaningful insights from the selected literature, contributing to a nuanced understanding of how the 

n of DevSecOps and Chaos Engineering augments resiliency and antifragility in 
contemporary software development practices. (see Figure 1) 

 

ure 1. Flow Diagram of the PRISMA approach 

 

In this preliminary research, a search string containing the keywords “DevOps,” “DevSecOps”, “Chaos 
“Observability”, and “implementation” was 

holar databases. Leveraging these sources, we aim to 
unearth a wealth of literature that sheds light on the intricate interplay between these methodologies. 
The goal is to identify critical insights, emerging trends, and gaps within the discourse on how these 
practices collectively contribute to bolstering system resiliency and nurturing antifragility. The 

reviewed journals in the 
ade once a relevant subset was found. 

The inclusion criteria were limited to the following keywords: “DevOps”, “DevSecOps”, “Challenges”, 
“Implementation”, and “Security”. A paper was not considered for evaluation if it did not directly relate 

For the Exclusion criteria, if the paper's title did not contain the relevant keywords or the content was 

To execute this Literature Review, PRISMA was used to report the required references in this literature 
review. This approach provides a transparent and structured framework, ensuring a rigorous selection 

or relevant studies. Beginning with an exhaustive search, our methodology involves carefully 
screening and evaluating identified articles based on predefined inclusion and exclusion criteria. This 

n most closely with the focal points of our 
minimize bias, and extract 

meaningful insights from the selected literature, contributing to a nuanced understanding of how the 
n of DevSecOps and Chaos Engineering augments resiliency and antifragility in 

Applied Intelligence and Computing

11



 

Steps used in the Prisma approach: 
 
 Title and Abstract Screening for the Keywords Searched. 
 Full-Text Assessment. 
 Data Extraction of the relevant Research References. 
 Quality Assessment. 
 Shortlist of the papers considered. 
 (Total papers considered for this study after using PRISMA: 22) 

 
Using the PRISMA methodology in the study, we expect a well-organized and reliable overview of the 
existing DevSecOps and Chaos Engineering research. We carefully select relevant studies from 
respected databases, ensuring they meet specific criteria. This method ensures that we include high-
quality research and maintain a high standard of evidence. As we go through the data extraction and 
analysis process, the approach would help identify the findings clearly and transparently. Ultimately, 
this systematic review aims to provide a straightforward and evidence-based understanding of how 
combining DevSecOps and Chaos Engineering can make software systems more resilient and 
antifragile. The results will not only contribute to our current knowledge but will also guide future 
research and practical applications in the field of software development and security. 

4 Discussion  

The systematic "chaotic engineering" approach aims to increase system dependability and resilience 
through carefully monitored experimentation. The first important step is to thoroughly understand the 
system from beginning to end. Following an understanding of the system, the next step in the chaos 
engineering process is to develop hypotheses and educated predictions about how the system would 
behave under controlled disruptions. A thorough experiment plan is then created, outlining the precise 
chaos scenarios that will be shown. After purposefully disrupting the system during the chaotic 
experiments, the outcomes are carefully examined. The results are used to support or refute the 
original theories. The process is repeated as the explosion radius, which indicates the degree of chaos 
introduction, expands and confidence in the system's resilience increases. This iterative process 
encourages ongoing development. 
Lastly, as the system matures, chaos engineering can be included in production environments to 
support the resilience and ongoing evolution of the system. Organisations are ensured to systematically 
identify vulnerabilities, fortify their systems, and prepare for issues in the actual world by using this 
systematic methodology [5] [6]. 
 
In Site Reliability Engineering (SRE), chaos engineering is essential because it introduces controlled 
disruptions into a system to highlight flaws, enhance fault tolerance, and foster resilience [18]. Chaos 
experiments provide a proactive approach to dependability by teaching SREs about a system's capacity 
and limits through deliberate stress testing and simulated failures. This iterative approach improves 
system design and architecture by taking lessons from both successful and bad cases [6]. Automation 
technologies are frequently used to mimic interruptions, which promotes the creation of reliable 
monitoring and alerting systems. Ultimately, chaos engineering helps organisations change their 
culture by reducing the likelihood of unanticipated production-related incidents and fostering 
confidence in a system's capacity to handle erratic, real-world conditions [12] [17]. 

4.1 Observability 

Observability in DevSecOps refers to gaining comprehensive insights into the security aspects of the 
software development and delivery process. It involves monitoring and analysing various elements 
such as code repositories, builds, deployments, and runtime environments to ensure security measures 
are effectively implemented [9][15]. 

Nihar Ajay Mhatre, Mugdha Shailendra Kulkarni, Fatima Ali

12



 

4.2 Case Study Implementation of Chaos Engineering  

Netflix created Chaos Engineering, a field that involves controlled trials on a distributed system to 
increase confidence in its capacity to endure chaotic conditions in production and improve system 
resilience and reliability. Chaos Engineering has become a key component of Netflix's methodology, 
utilising ideas including creating hypotheses around steady-state behaviour, altering real-world 
occurrences, conducting experiments in production, and automating trials for continuous testing. (see 
Figure. 2) Netflix engineers intentionally introduce errors and simulate real-world disruptions to find 
weaknesses, guarantee gradual system deterioration, and enhance overall system resilience. Based on 
Netflix's experience, the following guidelines advance the subject of chaotic engineering by 
understanding system behaviour and encouraging a proactive approach to dependability. To provide 
ongoing service even in the face of unforeseen problems, the process entails identifying quantifiable 
steady states, formulating hypotheses, adding real-world factors, and methodically questioning system 
behaviour. Chaos engineering may become more widely used in various fields, which will need case 
studies, improved tools, and investigation of event injection models to develop further and expand this 
novel strategy [6]. 

 
To foster the need for availability and Resilience, Netflix introduced the Simian Army. Simian Army 
comprises a suite of tools deliberately designed to cause malfunctions and interruptions in Netflix's 
cloud-based infrastructure. By putting the system to the test in a realistic setting, the Simian Army 
enables engineers to find and fix flaws before they become severe problems in real-world situations 
[20]. 
 
Essential elements of the Simian Army are different "monkeys," each with a distinct function in 
emulating various failure scenarios. By erasing virtual machine instances randomly, the Chaos Monkey 
forces the system to adjust and bounce back from unforeseen setbacks. Latency Monkey creates delays 
in replicating real-world network latency situations to assess the system's performance in challenging 
circumstances. Conformity Monkey focuses on finding instances of not complying with best practices 
and security regulations to maintain a standardised and secure environment. Doctor Monkey actively 
monitors and resolves sick instances in the production environment to maintain the system's general 
health. Janitor Monkey performs a cleanup function by locating and eliminating zombie instances and 
underutilised resources. Security Monkey is committed to examining policy infractions and flaws, 
offering crucial information for preserving environmental security.Last, Chaos Gorilla tests the 
system's resilience to significant disruptions by mimicking the outage of an entire Amazon availability 
zone. Collectively, these primates constitute an all-encompassing toolkit for chaotic engineering, 
cultivating an anticipatory approach to system evaluation and ongoing enhancement within Netflix's 
operational framework [21]. 
 
Businesses across all sectors, particularly the IT industry, must change their business strategies to 
increase productivity and high-quality deliverables in response to technological advancements. 
Customers expect software programs to be more accessible and user-friendly to meet their evolving 
needs. Because this might result in numerous errors, it is difficult for software companies to produce 
and deploy their products frequently enough to meet the expectations of their customers. Customers 
will be unhappy, and substantial losses in money, time, and resources will result [7]. 

Applied Intelligence and Computing

13



Chaotic engineering and continuous integration and deployment (CI/CD) strengthen software 
development and delivery pipelines. Organisations can proactively evaluate their systems' behaviour 
when faced with challenging circumstances by introducing defects, 
CI/CD processes. By implementing this approach, teams may find vulnerabilities, improve fault 
tolerance, and ensure the CI/CD pipeline can manage unforeseen difficulties gracefully. In continuous 
integration and delivery (CI/CD), chaos engineering entails designing controlled experiments that 
emulate real-world situations. This enables development and operations teams to verify the resilience 
and dependability of their automation workflows. Ultimately, CI/CD processes tha
engineering concepts help create more trustworthy, resilient, and adaptive software delivery pipelines
[8]. 
 
To execute the Chaos attack (Gremlin attacks) in CI/CD, we can use Gremlin API. The following steps 
can be followed to execute the attack. 
 
To post attacks, use CURL. 
 
Block and poll our observability tools (like Datadog or New Relic) and the Gremlin API to find out 
about the current state of our environment and the attack's progress while it's ongoing.
 
We fail the build if the observability tool's API returns results higher than our predetermined threshold. 
We fail the build if the attack enter

5 Implications  

5.1 Chaos in Operation 

Chaos in operations refers to deliberately introducing controlled 
within an organisational framework to assess the system's resilience, identify vulnerabilities, and 
improve overall operational robustness. This practice, often associated with disciplines like Chaos 
Engineering, is employed to proactively test how well operations can adapt and recover from 
unexpected challenges, such as system failures or sudden increases in demand. Organisations gain 
valuable insights by intentionally creating chaos scenarios and analysing the system's 

Figure 2. - Chaos Engineering Cycle 

Chaotic engineering and continuous integration and deployment (CI/CD) strengthen software 
development and delivery pipelines. Organisations can proactively evaluate their systems' behaviour 
when faced with challenging circumstances by introducing defects, failures, or interruptions into the 
CI/CD processes. By implementing this approach, teams may find vulnerabilities, improve fault 
tolerance, and ensure the CI/CD pipeline can manage unforeseen difficulties gracefully. In continuous 

(CI/CD), chaos engineering entails designing controlled experiments that 
world situations. This enables development and operations teams to verify the resilience 

and dependability of their automation workflows. Ultimately, CI/CD processes tha
engineering concepts help create more trustworthy, resilient, and adaptive software delivery pipelines

To execute the Chaos attack (Gremlin attacks) in CI/CD, we can use Gremlin API. The following steps 
tack.  

Block and poll our observability tools (like Datadog or New Relic) and the Gremlin API to find out 
about the current state of our environment and the attack's progress while it's ongoing.

ability tool's API returns results higher than our predetermined threshold. 
We fail the build if the attack enters one of the failure scenarios [16]. 

 

Chaos in operations refers to deliberately introducing controlled disruptions or unpredictable events 
within an organisational framework to assess the system's resilience, identify vulnerabilities, and 
improve overall operational robustness. This practice, often associated with disciplines like Chaos 

oyed to proactively test how well operations can adapt and recover from 
unexpected challenges, such as system failures or sudden increases in demand. Organisations gain 
valuable insights by intentionally creating chaos scenarios and analysing the system's 

 

 

Chaotic engineering and continuous integration and deployment (CI/CD) strengthen software 
development and delivery pipelines. Organisations can proactively evaluate their systems' behaviour 

failures, or interruptions into the 
CI/CD processes. By implementing this approach, teams may find vulnerabilities, improve fault 
tolerance, and ensure the CI/CD pipeline can manage unforeseen difficulties gracefully. In continuous 

(CI/CD), chaos engineering entails designing controlled experiments that 
world situations. This enables development and operations teams to verify the resilience 

and dependability of their automation workflows. Ultimately, CI/CD processes that use chaotic 
engineering concepts help create more trustworthy, resilient, and adaptive software delivery pipelines 

To execute the Chaos attack (Gremlin attacks) in CI/CD, we can use Gremlin API. The following steps 

Block and poll our observability tools (like Datadog or New Relic) and the Gremlin API to find out 
about the current state of our environment and the attack's progress while it's ongoing. 

ability tool's API returns results higher than our predetermined threshold. 

disruptions or unpredictable events 
within an organisational framework to assess the system's resilience, identify vulnerabilities, and 
improve overall operational robustness. This practice, often associated with disciplines like Chaos 

oyed to proactively test how well operations can adapt and recover from 
unexpected challenges, such as system failures or sudden increases in demand. Organisations gain 
valuable insights by intentionally creating chaos scenarios and analysing the system's responses, 

Nihar Ajay Mhatre, Mugdha Shailendra Kulkarni, Fatima Ali

14



 

enabling them to enhance their operational procedures, fortify critical processes, and foster a culture of 
adaptability and continuous improvement in the face of unforeseen challenges [9]. 

5.2 Chaos in the Cloud 

According to Basiri et al., chaos engineering is the practice of testing a distributed cloud system to 
increase confidence in its ability to survive chaotic conditions in production. Experiments to support or 
refute theories are important to chaotic engineering. In this context, a hypothesis is a system's 
anticipated or presumptive behaviour under conditions. In chaotic engineering experiments, theories 
are examined by introducing disturbances, such as malfunctions, in authentic scenarios and 
monitoring the system's behaviour. The observed behaviour is fresh knowledge since it provides 
insights into how the system will fail or withstand (confirm or disprove the defined hypotheses) [13]. 
On the other hand, modern chaotic engineering approaches concentrate on availability experiments, in 
which theories are based on availability characteristics like latency. We think security-oriented 
conjectures are likewise feasible and highly advantageous to security experts. Moreover, resilience is 
essential to security (confidentiality and integrity) and availability. Consequently, the groundwork for 
these linkages is established in the following subsections [10] [11]. 

6 Role of Chaos in SRE 

Chaos Engineering plays a vital role in Site Reliability Engineering (SRE) by introducing controlled 
disruptions into a system, aiming to identify weaknesses, improve fault tolerance, and build resilience 
[18]. Through intentional stress testing and simulated failures, chaos experiments help SREs 
understand a system's limits and capacity, fostering a proactive mindset toward reliability. This 
iterative process involves learning from both successful and unsuccessful scenarios, driving 
improvements in system design and architecture [6]. Automation tools are often utilized to simulate 
disruptions, encouraging the development of robust monitoring and alerting systems. Ultimately, chaos 
engineering contributes to a cultural shift within organizations, instilling confidence in a system's 
ability to handle real-world, unpredictable conditions and mitigating the risk of unexpected outages in 
production [12] [17]. 

7 Challenges in Chaos Engineering 

Implementing chaos engineering in organizations presents several challenges that need careful 
consideration. First, there is frequently cultural opposition since teams may be reluctant to completely 
embrace the technique out of concern of purposefully introducing mistakes. Resource limitations are 
another major issue because conducting chaotic experiments well requires a lot of staff, time, and 
equipment. Because of the complexity of implementation, especially in large, distributed systems, 
careful preparation and specialised knowledge are required to guarantee the safety and control of 
experiments. Additionally, there is an inherent risk in chaos engineering because ill-thought-out 
experiments may cause unintentional outages or system deterioration, therefore it is important to 
carefully weigh the risks and rewards. It can be challenging to gauge how chaotic engineering affects 
system resilience and reliability; successful measurement and monitoring are necessary. Finally, in 
order to ensure that chaotic engineering enhances rather than interferes with present workflows, 
integrating it with current DevOps and security approaches necessitates team alignment and 
collaboration. These difficulties highlight the necessity of careful planning, effective resource allocation, 
and open communication when implementing chaos engineering techniques inside a company [8, 14]. 

Applied Intelligence and Computing

15



 

8 Conclusion 

This literature analysis shows how DevOps evolved into DevSecOps, emphasising integrating Chaos 
Engineering to improve resilience and antifragility. Software development underwent a paradigm shift 
byadopting collaborative DevOps over traditional techniques, emphasising automation and agility. 
DevSecOps, an expanded paradigm that seamlessly integrates security throughout the development 
lifecycle, arose from recognisingsecurity's vital role. This paradigm is further strengthened by Site 
Dependability Engineering (SRE), which is based on Google's experience and emphasises system 
performance and dependability through automation and monitoring. A proactive experimentation 
method is introduced by incorporating Chaos Engineering, whereby errors are purposefully introduced 
to reveal vulnerabilities and improve system robustness. As we go through the data extraction and 
analysis process, the approach would help identify the findings clearly and transparently. Ultimately, 
this systematic review aims to provide a straightforward and evidence-based understanding of how 
combining DevSecOps and Chaos Engineering can make software systems more resilient and 
antifragile. The results will not only contribute to our current knowledge but will also guide future 
research and practical applications in the field of software development and security. 

 

Reference 

[1]  X. Ramaj, "A DevSecOps-enabled Framework for Risk Management of Critical Infrastructures," 2022 
IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), Pittsburgh, PA, USA, 2022, pp. 242-244, doi: 10.1145/3510454.3517053. 

[2] Sandeep Madamanchi, Google Cloud for DevOps Engineers: A practical guide to SRE and achieving 
Google's Professional Cloud DevOps Engineer certification, Packt Publishing, 2021. 

[3] A. Basiri et al., "Chaos Engineering," in IEEE Software, vol. 33, no. 3, pp. 35-41, May-June 2016, doi: 
10.1109/MS.2016.60. 

[4]  D. Anjaria, Mugdha Kulkarni, “Effective DevSecOps Implementation: A Systematic Literature Review”, 
Cardiometry, 2022. 

[5] M. Arsecularatne and R. Wickramarachchi, "The Adoptability of Chaos Engineering with DevOps to 
Stimulate the Software Delivery Performance: A Systematic Literature Review," 2023 IEEE 8th 
International Conference for Convergence in Technology (I2CT), Lonavla, India, 2023, pp. 1-5, doi: 
10.1109/I2CT57861.2023.10126414. 

[6] H. Tucker, L. Hochstein, N. Jones, A. Basiri and C. Rosenthal, "The Business Case for Chaos Engineering," 
in IEEE Cloud Computing, vol. 5, no. 3, pp. 45-54, May./Jun. 2018, doi: 10.1109/MCC.2018.032591616. 

[7] D. M. Shawky, "Traditional vs Agile development a comparison using chaos theory," 2014 9th International 
Conference on Software Paradigm Trends (ICSOFT-PT), Vienna, Austria, 2014, pp. 109-114. 

[8] M. Shahin, M. Ali Babar and L. Zhu, "Continuous Integration, Delivery and Deployment: A Systematic 
Review on Approaches, Tools, Challenges and Practices," in IEEE Access, vol. 5, pp. 3909-3943, 2017, doi: 
10.1109/ACCESS.2017.2685629. 

[9] P. Dedousis, G. Stergiopoulos, G. Arampatzis and D. Gritzalis, "Enhancing Operational Resilience of Critical 
Infrastructure Processes Through Chaos Engineering," in IEEE Access, vol. 11, pp. 106172-106189, 2023, 
doi: 10.1109/ACCESS.2023.3316028. 

[10] S. De, "A Study on Chaos Engineering for Improving Cloud Software Quality and Reliability," 2021 
International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications 
(CENTCON), Bengaluru, India, 2021, pp. 289-294, doi: 10.1109/CENTCON52345.2021.9688292. 

[11] K. A. Torkura, M. I. H. Sukmana, F. Cheng and C. Meinel, "CloudStrike: Chaos Engineering for Security and 
Resiliency in Cloud Infrastructure," in IEEE Access, vol. 8, pp. 123044-123060, 2020, doi: 
10.1109/ACCESS.2020.3007338. 

[12] Deep Manishkumar Dave, ” Impact of Site Reliability Engineering on Manufacturing Operations: 
Improving Efficiency and Reducing Downtime”, International Journal of Scientific and Research 
Publications, Volume 13, Issue 11, November 2023, ISSN 2250-3153, DOI: 
10.29322/IJSRP.13.11.2023.p14312 

Nihar Ajay Mhatre, Mugdha Shailendra Kulkarni, Fatima Ali

16



 

[13] F. Poltronieri, M. Tortonesi and C. Stefanelli, "A Chaos Engineering Approach for Improving the Resiliency 
of IT Services Configurations," NOMS 2022-2022 IEEE/IFIP Network Operations and Management 
Symposium, Budapest, Hungary, 2022, pp. 1-6, doi: 10.1109/NOMS54207.2022.9789887. 

[14] E. Zio, "Some Challenges and Opportunities in Reliability Engineering," in IEEE Transactions on 
Reliability, vol. 65, no. 4, pp. 1769-1782, Dec. 2016, doi: 10.1109/TR.2016.2591504. 

[15] I. Siddiqui, A. Pandey, S. Jain, H. Kothadia, R. Agrawal and N. Chankhore, "Comprehensive Monitoring and 
Observability with Jenkins and Grafana: A Review of Integration Strategies, Best Practices, and Emerging 
Trends," 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies 
(ISMSIT), Ankara, Turkiye, 2023, pp. 1-5, doi: 10.1109/ISMSIT58785.2023.10304904. 

[16] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter and V. Sekar, "Gremlin: Systematic Resilience 
Testing of Microservices," 2016 IEEE 36th International Conference on Distributed Computing Systems 
(ICDCS), Nara, Japan, 2016, pp. 57-66, doi: 10.1109/ICDCS.2016.11.  

[17] Srikarthick Vijaykumar, “Site Reliability Engineering (SRE)”, EJIAR, vol. 2, no. 2, pp. 6–11, Apr. 2023.a 
[18] Petersson, L, “An Empirical Investigation of the Acceptance of Chaos Engineering (Dissertation).” 2022. 
[19] “Damian A. Tamburri, Marcello M. Bersani, Raffaela Mirandola, Giorgio Pea” DevOps Service Observability 

By-Design: Experimenting with Model-View-Controller 
[20] Service-Oriented and Cloud Computing, 2018, Volume 11116 
[21] Bailey, T., Marchione, P., Swartz, P., Salih, R., Clark, M. R., & Denz, R. (2022, May). Measuring the 

resiliency of systems using chaos engineering experiments. In Disruptive Technologies in Information 
Sciences VI (Vol. 12117, pp. 20-32). SPIE. 

[22] Monge Solano, I., & Matók, E. (2020). Developing for Resilience: Introducing a Chaos Engineering tool. 
[23]  S. Shariah and A. Ferworn, "Securing APIs and Chaos Engineering," 2021 IEEE Conference on 

Communications and Network Security (CNS), Tempe, AZ, USA, 2021, pp. 290-294, doi: 
10.1109/CNS53000.2021.9705049. 

 

Applied Intelligence and Computing

17


