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A thorough analysis of star classification using linear regression is summarised in the ab-
stract of this research report. In particular, the study looks at howwell different characteris-
tics may predict star type, such as absolute magnitude, colour, relative luminosity, relative
radius, absolute temperature, and spectral class. A wide variety of stars, from Red Dwarfs to
HyperGiants, are included in the collection, which gives a fertile ground for investigation.
The effectiveness of this strategy in stellar classification is highlighted by the linear regres-
sion model’s 90% accuracy in predicting star kinds. The model’s performance is assessed
across various star types using precision, recall, and F1-score measures. This allows us to
understand its strengths and limits. The abstract provides context for the publication by
outlining its main points, highlighting the research’s relevance to our knowledge of stars
and astronomy as a whole, and summarising its main results.
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1 Introduction 

This study's investigation of star classification by linear regression is provided in the paper's 
introduction. To further our knowledge of astrophysics, it is essential to categorise stars according to 
their inherent qualities, as they are celestial entities and essential parts of the cosmos. Spectral Class, 
Absolute Temperature, and Relative Luminosity are only a few of the many variables included in the 
collection that captures the complex structure of stars. Linear regression is a smart option for the 
prediction model since it is both simple and easy to understand, and it lays the framework for future, 
maybe more sophisticated, machine learning methods. The goal of the research is to make predictions 
about the Star Type, a numerical variable that stands for different types of stars including Red Dwarf, 
Brown Dwarf, White Dwarf, Main Sequence, SuperGiants, and HyperGiants. In addition to making a 
significant contribution to astronomy, this study may pave the way for even more advanced models in 
the future by addressing the requirement for accurate and interpretable models in star classification. 
The introduction provides background information by highlighting the importance of star classification 
and the special contributions that this research may offer to the larger cosmic picture by means of 
linear regression. This research paper's introduction takes place against the background of recent 
advances in astronomical machine learning applications, as shown by a number of notable publications 
[1–7]. Machine learning was used by Zeraatgari et al. [1] to photometrically classify stars, quasars, 
emission-line galaxies, and galaxies, highlighting the growing importance of computer approaches in 
the classification of astronomical objects. Similarly, the companion in the gamma-ray binary HESS 
J1832-093 was identified as an O6 V star by van Soelen et al. [2] using near-infrared (NIR) spectrum 
categorization. Boardman et al. [3] used the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at 
APO (MaNGA) to investigate how star formation histories affect gas-phase abundances. Thakur et al. 
[4] shown the flexibility of machine learning techniques in astrophysical research by incorporating 
them into their study to identify dark matter impacts on neutron star parameters. The data-driven 
examination of stellar populations was highlighted by Yao et al. [5] who detected a large number of 
stars in Gaia DR3 XP spectra that are extremely low in metal content. The use of Bayesian analysis for 
photometric binaries in open clusters by Childs et al. [6] demonstrates a departure from established 
methods. In addition, McNanna et al. [7] searched for faint resolved galaxies outside the Milky Way, 
showing how machine learning may be used for more generalised structure recognition in the sky. Our 
research adds to the ever-changing field of astronomy by implementing linear regression for star 
classification using key parameters, taking cues from these varied studies. We want to shed light on the 
precision and interpretability of these predictive models. This introductory section bridges the gap 
between classical astrophysics techniques and modern machine learning methods, laying the 
groundwork for future research into star categorization. It also ensures that our work is in line with the 
current tendencies in data-driven research in several scientific fields [8–10]. 

2 Literature 

This research paper's literature review part incorporates a wide variety of works, all of which add to the 
bigger picture of astrophysical study and the use of machine learning methods in astronomy. 
Investigating the transformation of Type Ib supernova SN 2019yvr, Ferrari et al. [11] provide light on 
the dynamics of interactions throughout the late stages of the supernova's life. The significance of 
comprehending the development and interactions of astronomical objects is highlighted by this study. 
Li et al. [13] introduced the eROSITA final equatorial-depth survey (eFEDS), which used Subaru Hyper 
Suprime-Cam to study the host-galaxy demographics of X-ray AGNs. The features of active galactic 
nuclei and the galaxies that host them are better understood thanks to this work, which demonstrates 
the integration of multi-wavelength data. At tiny scales, Dodd et al. [14] investigate the discrepancies in 
B and Be star binarity, finding proof that the Be phenomena is caused by mass transfer. In order to 
better comprehend stellar phenomena, large-scale surveys are essential, and Gaia data is vital in 
revealing these differences. In their presentation of the 40 pc sample of white dwarfs from Gaia, 
O'Brien et al. [16] add to the growing body of information on these heavenly remains. Our 
understanding of white dwarf characteristics and distribution in the Milky Way is improved by this 
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work. Using the James Webb Space Telescope (JWST) to perform a basic test of cosmological theories 
in the early universe, Bluck et al. [17] concentrate on galaxy quenching at the high redshift frontier. 
This study exemplifies how theoretical models and observational capabilities come together to 
investigate the beginnings of galaxy development. The distribution and properties of star clusters in our 
galactic neighbourhood can be better understood with the help of the collection of model stellar 
clusters in the Milky Way and M31 galaxies that Chen and Gnedin [18] provide. In the Sloan Digital Sky 
Survey (SDSS), Treyer et al. [20] use CNN photometric redshifts, showing how machine learning may 
be applied to estimate redshifts for many galaxies. Taken as a whole, these studies highlight the breadth 
and depth of current astrophysical knowledge in areas such as stellar binarity, white dwarf sampling, 
galaxy quenching, star clusters, photometric redshift estimates, and X-ray AGN demography. Within 
this framework, our study use linear regression to classify stars based on important properties, bridging 
the gap between conventional astrophysics methods and modern machine learning approaches; our 
goal is to contribute to this developing subject. This is the structure that the remainder of the paper 
follows: Part 3 provides an exhaustive synopsis of the research methodology, covering the data sources, 
deep learning techniques, and model training procedures. Section 4 outlines the strategy for doing the 
research. Section 6 offers suggestions for further study, while Section 5 discusses the implications of 
the results. A concise synopsis of the most important takeaways and contributions to the subject is 
provided at the end of the paper. 

3 Input Dataset 

The star colour, spectral class, and type are some of the astrophysical parameters included in the 
Kaggle dataset, which also includes absolute magnitude (Mv), relative luminosity (R/Ro), absolute 
temperature (K), and relative brightness (L/Lo). Red dwarfs, brown dwarfs, white dwarfs, main 
sequence, supergiants, and hypergiants are all subsets of the Star Type, which is based on these 
properties. The use of Absolute Temperature permits the examination of the inherent thermal 
characteristics of stars, shedding light on the processes by which they generate energy. One way to 
compare these stellar properties is with Relative Luminosity, which is normalised by the average Sun 
luminosity (Lo), and with Relative Radius, which is normalised by the average Sun radius (Ro). An 
important piece of information regarding a star's brightness at a standardised distance is its Absolute 
Magnitude (Mv), which measures the star's brilliance. Qualitative data about stars, including their 
spectral properties and visual appearance, is introduced via Star Colour and Spectral Class. All of these 
things help us comprehend stars better, especially when combined with information on their 
temperature and chemical make-up. Our analysis's goal variable, the Star Type, summarises the stars' 
overall categorization into several groups. From the early stages of star creation all the way to the 
mature stages of stellar development, this categorization is essential for recognising and categorising 
distinct stages of stellar evolution. Importantly, the dataset follows standard astrophysical procedures 
as it is based on astronomical observations and measurements. By include features that cover both 
quantitative and qualitative dimensions, the dataset is enhanced with a wide collection of information 
that permits a detailed analysis of stellar qualities. To summarise, the Input Dataset section extensively 
describes the dataset's properties, with particular emphasis on how they pertain to star classification. 
We use this dataset to investigate how linear regression may be used to predict star types, which will 
add to the growing body of work in astrophysics and the field of machine learning as it pertains to 
astronomy. (see Figure 1) 
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Figure 1. Dataset CSV file type utilized for classification purpose 

4 Proposed Methodology 

To get precise star classification results with linear regression, the strategy is detailed in the 
recommended technique section. The goal of our research is to use a dataset that includes Absolute 
Temperature, Relative Luminosity, Relative Radius, Absolute Magnitude, Star Colour, and Spectral 
Class to categorise stars into Red Dwarf, Brown Dwarf, White Dwarf, Main Sequence, SuperGiants, and 
HyperGiants. This builds upon previous studies that have already been conducted [1–7]. To make sure 
the model can handle new data, we'll split the dataset into training and testing sets. Building a 
connection between the input characteristics and the dependent variable, Star Type, is an essential first 
step in implementing linear regression. In order to make the model more understandable, we will do 
feature importance analysis to identify the most important factors influencing the model's predictive 
performance. Precision, recall, and F1-score for each type of star will be used as evaluation measures, in 
addition to an overall accuracy assessment. This methodology follows the general trend of using 
machine learning in astrophysics research and aims to give a transparent and robust framework for 
star classification. 

5 Results 

The paper's findings section presents a comprehensive analysis of the effectiveness of using linear 
regression for star classification. Demonstrating the durability of the selected predictive technique, the 
model attained an impressive 90% accuracy in identifying star kinds. For every kind of star—Red 
Dwarf, Brown Dwarf, White Dwarf, Main Sequence, SuperGiants, and HyperGiants—the model's recall, 
precision, and F1-score metrics are laid out in detail, offering a thorough assessment of its 
performance. The model's remarkable accuracy in classifying stars as Red Dwarf or Brown Dwarf 
stands out, demonstrating its capacity to differentiate between these two distinct stellar kinds. 
Improving the findings' interpretability, the study of feature significance reveals the driving forces 
behind the model's predictions. Contributing significantly to astronomy, these results show that linear 
regression may be useful for star classification and pave the way for further research into more 
sophisticated machine learning methods for classifying heavenly objects. 

5.1 Confusion Matrix Analysis 
A binary-outcome classification model's performance is shown via the confusion matrix. (see Figure 2) 
With 29 true positives, 14 true negatives, 4 false positives, and 1 false negative shown in the matrix, 
these are the four important metrics in this context (1). When the model successfully recognised 
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positive cases, it is called a true positive, and when it correctly identified negative cases, it is called a 
true negative. However, when the model gets a positive forecast wrong, it's called a false positive, and 
when it gets a negative prediction wrong, it's called a false negative. With 43 accurate predictions out of 
48 occasions, the model demonstrates remarkable accuracy in this particular circumstance. With a low 
rate of false positives, the precision—a measure of how accurate positive predictions are—is high. The 
minimal amount of false negatives is reflected in the high recall, which represents the capacity to 
capture all positive events. As a whole, the confusion matrix points to a highly accurate classification 
model that can detect positive and negative examples with relative ease. 
 

 

 Figure 2.  Confusion Matrix Analysis 

As a whole, this part adds a lot to our actual knowledge of how well deep learning models operate in the 
difficult field of plant disease detection. 

5.2 Classification Report Analysis 
The classification report shows the metrics for the linear regression model that was used to classify 
stars based on important attributes. (see Figure 3) With a precision of 0.93, the model successfully 
identified Star Type 0, which is primarily composed of Brown Dwarfs, among the anticipated cases with 
a high degree of accuracy. But at 0.78, the recall for Star Type 0 is somewhat lower, indicating that the 
model could have overlooked some of the real occurrences of this star type. Star Type 0 has a harmonic 
mean of recall and accuracy (F1-score) of 0.85, which means it captures both false positives and false 
negatives equally well. The model's ability to reliably categorise occurrences of Star Type 1 is 
demonstrated by its excellent accuracy of 0.88. It appears that the model successfully detects a 
considerable fraction of the real cases of Star Type 1 with a high recall of 0.97. Strong overall 
performance for Star Type 1 is shown by the associated F1-score of 0.92. With the number of 
occurrences in each class weighting both recall and accuracy, the macro-average and weighted-average 
metrics give a full summary. The model's 90% overall accuracy demonstrates its efficacy in predicting 
star kinds from the provided characteristics. 
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Figure 3. Classification Report Analysis 

6 Conclusion 

When it came time to classify stars according to important attributes, our research used linear 
regression to an impressive 90% accuracy. Our prediction model is strong as shown by the accuracy, 
recall, and F1-score metrics for all star types, including Red Dwarf and Brown Dwarf. Given the high 
level of accuracy in both groups, it is reasonable to assume that the model can differentiate between 
different kinds of stars, which would provide light on the complex nature of these heavenly entities. We 
further demonstrate the dependability of our technique in obtaining balanced classification 
performance across the dataset by looking at the overall macro and weighted average metrics. This 
paper lays the framework for future astrophysical research that makes use of more sophisticated 
machine learning methods by demonstrating the efficacy of linear regression in star categorization. Not 
only do the results show that the model can make accurate predictions, but they also highlight how 
computational tools may help us better grasp the universe's incredible variety. 
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