Automate Code Refactoring for Enhanced
Software Maintenance and Development

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage
Sardar Patel Institute of Technology, Mumbai, India

Corresponding author: Atman Ainapure, Email: atman.ainapure@spit.ac.in

This paper unfolds a practical solution tailored to the intricate challenges faced by multina-
tional corporations (MNCs) in the landscape of software development. The core emphasis
of our research is on addressing the multifaceted aspects of maintaining code consistency,
longevity, and achieving bug-free functionality. The crux of our proposed solution lies in
the development of a sophisticated VS Code Extension built using TypeScript powered by
LangChain and Flask that not only guides developers through the intricate process of code
refactoring but also streamlines the often laborious task of generating comprehensive com-
ments. This dual-pronged approach seeks to not only enhance the intrinsic quality of the
codebase but also contribute significantly to the overall documentation and comprehensi-
bility of the software.

Keywords: Code Refactoring, Comment Generation, Langchain, Language Model, Code
Consistency, Code Quality, Software Maintenance, Programming Paradigms, Automated
Formatting, Code Optimization, Code Evolution, Developer Productivity.

2024. In Mukesh Saraswat & Rajani Kumari (eds.), Applied Intelligence and Comput-
ing, 209-222. Computing & Intelligent Systems, SCRS, India. https://doi.org/
10.56155/978-81-955020-9-7-21

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

1 Introduction

Within the complex milieu of multinational corporations (MNCs), the pivotal role of
maintaining code consistency, resilience, and seamless functionality cannot be over-
stated. Code, as the fundamental cornerstone of digital infrastructure, serves as the very
framework upon which these corporations construct and fortify their operations and ser-
vices. However, the quest for ensuring code quality presents a labyrinth of formidable
hurdles. Presently, developers embark on a manual odyssey to adhere meticulously to
specific coding standards. This intricate process entails exhaustive checks and balances,
meticulously ensuring that the code not only executes as envisaged but also harmonizes
with the predefined criteria of excellence and comprehensibility.

Nevertheless, this manual endeavor is time-consuming and heavily reliant on the indi-
vidual developer’s depth of expertise and unwavering diligence, rendering it susceptible
to the vagaries of human error. Furthermore, as the codebase burgeons and undergoes
evolutionary phases, the task of upholding consistency and readability metamorphoses
into an increasingly herculean feat. This escalating complexity threatens the code’s en-
during usability and sustainability, potentially impeding its longevity. Thus, the crux of
this paper lies in proposing an innovative automated solution, one designed to transcend
these challenges. Such a solution endeavors to not only streamline and elevate efficiency
but also ensure the steadfast maintainability of the code, fortifying its resilience and us-
ability for the foreseeable future.

Code quality is important because it impacts the overall software quality and the busi-
ness value of the software. According to Perforce[1], code quality affects how safe, secure,
and reliable the codebase is, which is critical for many development teams, especially
those developing safety-critical systems. Poor code quality can lead to software failures,
security breaches, or safety hazards, which can have catastrophic or fatal consequences.
Moreover, code quality influences how easy it is to understand, modify, test, and reuse
the code, which affects the productivity, efficiency, and satisfaction of the developers
and the customers. As The QA Lead states, code quality is an essential investment for
the project rather than a time-consuming task, as it lowers technical debt and ensures
the longevity of the software.

A study by IBM found that individual programmers are less than 50 percent efficient
at finding bugs in their own software, and most forms of testing are only 35 percent
efficient. Therefore, automated code review tools are needed to complement human ef-
forts and provide a more reliable and consistent way of detecting and preventing soft-
ware defects. Automated code review tools are a set of programs that can analyze the
source code and identify issues such as anti-patterns, bug risks, performance problems,
security vulnerabilities, code style violations, code complexity, code coverage, and more.
Some of the popular automated code review tools are DeepSource, Codacy, Code Cli-
mate, SonarCloud, and Embold. These tools can be easily integrated with various code
hosting platforms, such as GitHub, GitLab, or Bitbucket, and provide feedback on every

210

Applied Intelligence and Computing

pull request or commit. By using automated code review tools, developers can save time,
reduce errors, enhance security, increase performance, and ensure compliance with cod-
ing standards and best practices.

2 Literature Review

The current manual process of adhering to coding standards and conducting code qual-
ity checks is time-consuming and error-prone, hindering development efficiency and
increasing the risk of software defects.

To address these challenges, researchers have explored various automated approaches
to enhance code consistency, longevity, and bug-free functionality. One promising ap-
proach is static code analysis (SCA), which involves analyzing code without executing it
to identify potential issues and enforce coding standards [2]. SCA tools can automatically
detect violations of coding conventions, naming patterns, and style guidelines, promot-
ing code consistency and readability. Now, let’s delve into the creative ideas that others
have formulated:

1. Best Practices for Software Development [3]: A Systematic Literature Review: Ordonez-
Pacheco, Cortes-Verdin, and Ocharan-Hernandez conducted an SLR to identify best prac-
tices in software development. Their objective was to explore definitions, distinctive
characteristics, identification methods, and performance evaluation related to best prac-
tices. The study revealed seven different definitions of best practice, emphasizing the
need for clarity. Additionally, they proposed two classification schemes based on charac-
teristics such as name, stakeholders, and context. Methods for identifying and evaluating
best practices within the software development life cycle were also discussed. For multi-
national corporations (MNCs) aiming to standardize their processes, this study provides
valuable insights.

2. Challenges of Low-Code/No-Code Software Development [4]: A Literature Review:
While not MNC-specific, this review sheds light on challenges in low-code/no-code de-
velopment. Key challenges explored include balancing simplicity with customization,
ensuring security and compliance, handling scalability and performance, and bridging
the gap between professional developers and citizen developers. Although not directly
applicable to MNCs, understanding these challenges can inform software development
practices in various contexts.

3. Understanding the Challenges and Novel Architectural Trends in Multi-Cloud Na-
tive Applications: A Systematic Literature Review [5]: This SLR investigates challenges
related to multi-cloud native applications. The main trends identified include microser-
vices architecture, containerization, serverless computing, and DevOps practices. While
not MNC-focused, the findings can guide MNCs in enhancing their software develop-
ment processes across cloud-native landscapes.

4. Challenges of Developing Secure Software Using the Agile Approach [6]: Although

211

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

not directly MNC-related, this study examines challenges in developing secure software
using agile methodologies. The authors identify 20 challenges across various aspects
of the development life cycle, including incremental development, security assurance,
collaboration, awareness, and security management. MNCs can adapt these insights to
improve their secure software development practices.

5. A Systematic Literature Review and Delphi Study on Agile Software Development
Challenges [7]: This study maps agile software development challenges. Categories of
challenges explored include requirements engineering, project management, quality as-
surance, and collaboration. While not MNC-specific, the identified challenges can inform
MNCs seeking to optimize their agile development processes. These studies collectively
contribute to the evolving landscape of software development practices and offer valu-
able guidance for MNCs navigating complex development environments.

6. “Multinational Corporations and Grand Challenges: Part of the Problem, Part of
the Solution?” [8]: This special issue invites scholarly investigations into the strategies,
business conduct, and political behaviors of MNCs. Specifically, it focuses on their role in
causing or contributing to global challenges. The issue aims to address both the negative
externalities resulting from MNC activities and any compensatory actions they under-
take. Despite MNCs’ economic and political power, research on their specific impact
remains scarce. Critical perspectives are essential to question MNC hegemony and eval-
uate their effects on societies, the environment, and stakeholders. By examining MNC
behavior, impact, and potential solutions, this issue seeks to fill gaps in our understand-
ing of their multifaceted role in global challenges.

7. “The Engineering Implications of Code Maintenance in Practice” [9]: This paper
delves into the challenges faced by developers when evolving and maintaining low-
latency, large-scale distributed systems—common scenarios in MNCs. Complexity and
Scale: MNCs grapple with massive codebases, making code maintenance inherently com-
plex. The sheer scale of these systems poses challenges in ensuring code quality and
consistency. Code Quality Degradation: Over time, code quality tends to degrade due to
evolving requirements, frequent updates, and developer turnover. Maintaining high stan-
dards becomes increasingly difficult. Change Management: Efficient change management—
rapidly incorporating updates while minimizing disruptions—is crucial for MNCs oper-
ating in dynamic environments. Opportunities: The study underscores the need for ef-
ficient code maintenance practices within MNCs, emphasizing the impact on software
quality and developer productivity.

8. “Challenges in Agile Software Maintenance for Local and Global Environments”
[10]: This study specifically explores challenges related to agile software maintenance.
Quality Factors: Agile methods significantly influence software quality factors such as
reliability and maintainability. Balancing agility with long-term quality remains a criti-
cal challenge. Local vs. Global Contexts: MNCs operate across diverse local and global
environments. Adapting agile practices to suit these varying contexts poses unique chal-

212

Applied Intelligence and Computing

lenges. Predictive Techniques: Machine learning techniques can predict and prevent code
defects, enhancing maintenance efficiency. Implications for MNCs: Understanding these
challenges informs MNCs seeking to optimize their agile development processes across
different geographical and organizational contexts.

Another approach involves using rudimentary machine learning (ML) techniques to
identify and predict code defects. ML models can be trained on large datasets of code
and associated bug reports to learn patterns and correlations that indicate potential bugs
[11]. These models can then be used to proactively identify and flag code that is likely to
contain bugs, allowing developers to address them early in the development process.

To further enhance code longevity, researchers have explored techniques for refac-
toring and code modernization. Refactoring involves restructuring code without chang-
ing its external behavior to improve its internal structure, making it easier to under-
stand, maintain, and extend [12]. Code modernization involves updating legacy code to
newer programming languages, frameworks, and technologies to improve its compati-
bility with modern systems and enhance its maintainability [13].

In addition to automated approaches, researchers have also emphasized the impor-
tance of establishing clear coding guidelines and documentation practices to promote
code consistency and longevity [14]. Well-defined coding standards provide a consistent
framework for developers to follow, reducing the risk of introducing inconsistencies and
errors. Comprehensive documentation, including code comments and design documents,
enhances code comprehension and maintainability for future developers.

3 Related Works

Manual Code Maintenance Challenges: Several studies have highlighted the challenges
inherent in manual code maintenance processes within the domain of multinational cor-
porations (MNCs). The research underscores the time-intensive nature of manual adher-
ence to coding standards, which often leads to inefficiencies and susceptibility to human
error.

Technological Approaches: Recent advancements in technology have paved the way
for innovative solutions in code maintenance. Technologies like Langchain have been ex-
plored to automate code standardization and compliance. Furthermore, the utilization of
custom knowledge-based Language Models (LLMs) in backend systems shows promise
in enhancing code understanding and aligning with organizational coding standards.

Intelligent Systems for Code Maintenance: Intelligent systems designed for code main-
tenance have become a focal point of research. These systems aim to enhance the soft-
ware development process by providing targeted assistance to developers. Two key as-
pects are particularly relevant. The first being, Intelligent Front-End Extensions. These
extensions act as intelligent companions for developers during code refactoring. By an-
alyzing the existing codebase, they offer real-time guidance. Their purpose is twofold:

213

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

first, to optimize code comprehensibility by suggesting improvements in naming con-
ventions, structure, and readability; and second, to ensure adherence to coding standards.
For multinational corporations (MNCs), where large-scale codebases are common, such
extensions can significantly improve developer productivity and code quality. Next is
AlI-Driven Techniques. Artificial intelligence (AI) techniques hold immense promise in
automating various aspects of code maintenance. For instance. Machine learning mod-
els can learn from historical code changes and recommend refactoring opportunities.
Whether it’s identifying redundant code, improving performance bottlenecks, or stream-
lining complex logic, Al-driven refactoring tools can assist developers. Another example
can be Code Documentation Enhancement where Natural language processing (NLP)
models can generate high-quality code comments and documentation. Clear and con-
cise documentation is crucial for maintaining codebases, especially in MNCs with dis-
tributed teams and diverse expertise. By integrating these intelligent systems into the
development workflow, MNCs can streamline code maintenance, reduce manual effort,
and elevate overall software quality.

Gaps and Opportunities: Despite significant advancements, challenges persist. there
are both gaps and opportunities while advancing with the research.

a. Seamless Integration of Technologies like Langchain: Langchain, a novel code analy-
sis tool, offers valuable insights into code quality, patterns, and potential improvements.
However, integrating it seamlessly into existing development environments remains a
challenge. MNCs operate across diverse projects, languages, and frameworks. Ensuring
that Langchain harmoniously fits into this ecosystem is essential.

b. Holistic Solutions for Code Refactoring and Documentation: MNCs grapple with
legacy codebases, frequent updates, and evolving requirements. A holistic solution that
combines Langchain’s insights with custom LLMs could revolutionize code maintenance.
Imagine an intelligent system that not only identifies refactoring opportunities but also
generates clear, relevant comments and documentation. Such a system would bridge the
gap between manual code maintenance and automated practices. Developers could focus
on high-level design decisions, while routine tasks receive intelligent support.

By leveraging Langchain, custom LLMs, and Al techniques, MNCs can pave the way
for sustainable, agile software development.

4 Proposed Methodology

Our proposed methodology revolves around a seamless VSCode extension that inte-
grates with developers’ existing workflows, providing real-time code analysis and sug-
gestions for refactoring opportunities. Upon selecting a code snippet, the extension com-
municates with the backend infrastructure, employing Langchain’s semantic knowledge
and the LLM’s contextual understanding to identify and recommend refactoring im-
provements. These recommendations are presented to the developer. The overall archi-

214

Applied Intelligence and Computing

VS Code

Extension Host
«—Response——

Request——p| <«—Comment ts— CodeBERT

Local Flask
Service

—Original Code—»
—Knowledge Base—> LangChain

I

Vector Embeddings

Organization
Frontend

Updated Knowledgebas:

Figure 1: Overall Architecture of CodeSage

tecture can be seen in Figure 1.

Leveraging Langchain’s decentralized knowledge graph for programming languages,
our system gains a deep understanding of code semantics, enabling it to generate context-
aware refactoring suggestions that enhance code structure, design, and maintainability.
Additionally, the custom LLM, trained on a vast dataset of code and refactoring examples,
provides the system with the ability to learn from past decisions and adapt its recommen-
dations to specific coding standards, project-specific requirements, and programming
styles.

Beyond refactoring, our solution automates comprehensive documentation genera-
tion, including detailed explanations of refactoring changes, rationale behind the changes,
and potential implications for future modifications. This automated documentation en-
sures that code changes are accompanied by clear explanations, enhancing code compre-
hension and maintainability for future developers.

By combining automated code refactoring, documentation generation, and the power
of Langchain and LLM, our proposed methodology aims to revolutionize code mainte-
nance practices in MNCs. We envision a future where codebases are consistently refac-
tored, well-documented, and easy to maintain, leading to improved software quality, de-
veloper productivity, and reduced maintenance costs.

4.1 Automating Code Refactoring and Documentation: A Proposed Solution

Maintaining the consistency, longevity, and bug-free functionality of large codebases is
a critical challenge for multinational corporations (MNCs). Manual code refactoring and
documentation processes are not only time-consuming but also prone to human error,
leading to inconsistencies, inefficiencies, and an increased risk of software defects.

Key code quality challenges faced by MNCs include:

« Ensuring high code quality through consistent coding standards and practices.
« Maintaining code readability and simplicity to facilitate easier debugging and fu-

ture modifications.

215

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

« Repetitive code fragments increase maintenance effort and the risk of inconsistent
behavior.

+ Code that is not modular or reusable leads to redundant code and difficulty in
isolating and fixing issues.

To address these challenges, we propose an integrated system that automates code
refactoring and documentation generation, powered by a combination of a front-end
VSCode extension and a backend infrastructure leveraging Langchain and a custom
knowledge-based, fine-tuned Language Model (LLM).

« A clean, maintainable codebase by enforcing consistent coding standards and re-
ducing technical debt.

« Real-time feedback to enforce coding standards and catch issues early.

« Analyze code to offer intelligent refactoring and documentation suggestions, main-
taining modularity and reusability.

Extension Host senee

Architecture

Original ~ Refactored
Code Code

Commands

Refactoring Original
«— —
Cod

Refactor File
mi Service ode

(Ctri-Shift-R)
Refactor Selection | |
(Ctrl-Shift-T) ‘
Refactored Code Editor
Apply Changes

Add Comments
TextDocument | Refactored
Provider

Explain Code

Figure 2: Architecture of the VS Code extension

4.2 Introducing a VSCode Extension for Seamless Integration

At the heart of our solution lies a front-end Visual Studio Code extension as seen in
Figure 2. This extension seamlessly integrates with developers’ existing workflows, pro-
viding real-time code analysis and suggestions for refactoring opportunities. Upon se-
lecting a code snippet for refactoring, the extension initiates communication with the
back-end infrastructure to process the code and generate refactoring recommendations.
These recommendations are then presented to the developer, allowing them to review
and apply the changes with a single click.

216

Applied Intelligence and Computing

4.3 Enhancing Efficiency and Maintainability through Automated Code
Refactoring

Automated code refactoring offers several compelling benefits for MNCs, including:

Improved Code Quality: Automated refactoring tools can effectively identify and cor-
rect code smells, redundant code, and inefficient structures, leading to cleaner, more
maintainable code.

Reduced Development Time: By automating refactoring tasks, developers can redi-
rect their efforts toward higher-level design and implementation, significantly reducing
the time spent on manual code maintenance.

Enhanced Code Readability: Well-refactored code is easier to understand and modity,
fostering collaboration among developers and reducing the likelihood of errors when
making changes.

Adherence to Coding Standards: The proposed solution can be tailored to enforce
specific coding standards within an MNC, ensuring consistency across the codebase.

Comprehensive comments: The Visual Studio Code extension streamlines the task
of generating comprehensive comments by analyzing code in real-time and providing
intelligent, context-aware suggestions using an integrated Language Model (LLM).

4.4 Leveraging Langchain and LLM for Intelligent Code Refactoring

Our proposed solution utilizes Langchain, a decentralized knowledge graph for program-
ming languages, to provide a rich context for code analysis and refactoring. Langchain
stores relationships between programming constructs, enabling the system to under-
stand the semantic meaning of code and generate context-aware refactoring suggestions.
This semantic understanding is crucial for identifying refactoring opportunities that not
only improve code structure but also enhance its overall design and maintainability.

To further enhance the system’s intelligence, we employ a custom knowledge-based,
fine-tuned LLM trained on a massive dataset of code and associated refactoring examples.
This LLM provides the system with the ability to learn from past refactoring decisions
and adapt its recommendations to specific programming styles, coding standards, and
project-specific requirements.

4.5 Automating Comprehensive Documentation Generation

Beyond code refactoring, our solution also automates the generation of comprehensive
documentation for refactored code. This documentation includes detailed explanations
of the refactoring changes, the rationale behind the changes, and any potential implica-
tions for future code modifications. By automating this process, we eliminate the need
for manual documentation efforts, ensuring that code changes are accompanied by clear
and concise explanations.

217

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

5 Results and Discussion

We successfully developed a Visual Studio Code extension for automated code refactor-
ing and integrated it with a backend Flask server. The extension offers two modes of
operation: refactoring a selected code snippet or refactoring the entire file. Upon select-
ing the desired refactoring mode, the user can provide the code input. The refactored
code is then displayed in a dedicated panel, with changes highlighted in green and omit-
ted parts highlighted in red. This visual representation allows users to easily identify the
modifications made to the code. To ensure user control over the refactoring process, the
extension prompts the user to accept or reject the proposed changes. This confirmation
step ensures that the refactored code aligns with the user’s intentions and preferences.

For our understanding, we conducted testing by providing the VS Code extension to
50 participants, divided into five batches of 10 participants each. In the first batch, 9 out of
10 participants (90%) reported that the software accurately predicted their desired output.
The yield of subsequent batches is shown in Figure 3. Therefore, the overall accuracy of
our solution across all five batches is 74%.

L1101
L1110

LRy

L

L 11

Figure 3: The Yield of Batch Testing

5.1 Refactoring a Selected Code Snippet

As seen in Figure 4, the user can choose to refactor a selected snippet or the entire
file. When refactoring a selected code snippet, the extension isolates the chosen por-
tion of the code and sends it to the back-end Flask server for processing. The server
employs Langchain’s knowledge graph and the fine-tuned LLM to analyze the code se-
mantics, identify refactoring opportunities, and generate appropriate recommendations.
The refactored code is then sent back to the VSCode extension and presented to the user
within the dedicated panel. The user can review the changes, highlighted in green, and
decide whether to accept or reject the refactoring suggestions.

218

Applied Intelligence and Computing

Figure 4: The user can select either a code snippet, or an entire file to
refactor

5.2 Refactoring the Entire File

Refactoring the entire file involves sending the entire code file to the backend Flask
server for analysis and refactoring. The server applies the same process of semantic
analysis and refactoring suggestion generation as in the selected code snippet mode. The
refactored code is then sent back to the VSCode extension, where it is displayed alongside
the original code. The user can compare the original and refactored code, highlighted
changes in green and omissions in red, and decide whether to accept or reject the overall
refactoring changes.

5.3 User Control over Refactoring

As seen in Figure 5, throughout both refactoring modes, the VS Code extension prompts
the user to accept or reject the proposed changes before applying them to the code. This
user control ensures that the refactored code aligns with the developer’s intentions and
preferences. By providing this confirmation step, we empower developers to maintain
control over the codebase and ensure that refactoring efforts enhance the overall quality
and maintainability of the code.

Figure 5: The user can review and choose to accept the refactored code

219

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

The successful development of the VSCode extension for automated code refactoring
demonstrates the feasibility and effectiveness of our proposed methodology. The exten-
sion’s ability to refactor both selected code snippets and entire files, coupled with its
visual representation of changes and user control over refactoring, makes it a valuable
tool for developers in MNCs.

6 Conclusion

In conclusion, this research has presented a novel approach to automated code refactor-
ing and documentation generation for multinational corporations (MNCs). According to
a study [15] conducted by AlOmar et al., code review plays a crucial role in maintaining
software quality and sharing knowledge within development teamsl. The proposed so-
lution, centered on a front-end VSCode extension and a backend infrastructure powered
by Langchain and a custom Language Model (LLM), addresses the challenges of man-
ual code maintenance and enhances code quality, developer productivity, and overall
codebase maintainability.

The seamless integration of the VSCode extension into developers’ existing workflows
provides real-time code analysis and refactoring suggestions, empowering developers
to identify and address code issues efficiently. The backend infrastructure, leveraging
Langchain’s semantic knowledge and the LLM’s contextual understanding, generates
intelligent refactoring recommendations that align with specific coding standards and
project requirements.

The proposed solution not only automates code refactoring but also generates com-
prehensive documentation for refactored code, ensuring that code changes are accompa-
nied by clear explanations and rationale. This automated documentation enhances code
comprehension and maintainability for future developers, fostering collaboration and
reducing the risk of errors when making changes.

By seamlessly integrating automated code refactoring, documentation generation, and
harnessing the formidable capabilities of Langchain and LLM, this research not only
showcases the practicality but also underscores the efficacy of an innovative paradigm
poised to redefine code maintenance practices within Multinational Corporations (MNCs).

Looking ahead, the trajectory of future research endeavors extends toward a com-
prehensive exploration of the ramifications of automated code refactoring on developer
productivity and various code quality metrics. Moreover, an ambitious aim is set to seam-
lessly integrate the proposed solution into the intricate fabric of continuous integration/-
continuous delivery (CI/CD) pipelines, thereby establishing a dynamic and automated
framework for code refactoring and documentation updates. The envisioned future not
only involves a profound understanding of the theoretical underpinnings but also an ac-
tive pursuit of practical implementations that promise to shape the future landscape of
code maintenance practices.

220

References

[1]
(2]

(3]

[12]

Perforce Software, “What is code quality? An overview, Perforce, May 6, 2020

Xie, W., Pei, Z., & Xu, C. (2018). DeerStatic: A practical static analysis tool for detect-
ing and fixing defects. IEEE Transactions on Software Engineering, 44(5), 433-448.

R. Ordofiez-Pacheco, K. Cortes-Verdin, and J. Ochardn-Hernandez, “Best Practices
for Software Development: A Systematic Literature Review,” Advances in Intelli-
gent Systems and Computing, vol. 1297, 2020.

“Challenges of Low-Code/No-Code Software Development: A Literature Review,
Springer, 2022.

“Understanding the Challenges and Novel Architectural Trends in Multi-Cloud Na-
tive Applications: A Systematic Literature Review,” SpringerOpen, 2023.

“Literature Review of the Challenges of Developing Secure Software Using the Ag-
ile Approach,” IEEE 10th International Conference on Availability, Reliability and
Security, 2015.

“A Systematic Literature Review and Delphi Study on Agile Software Development
Challenges,” IEEE, 2021.

“Multinational Corporations and Grand Challenges: Part of the Problem, Part of
the Solution?” Critical Perspectives on International Business (CPoIB).

“The Engineering Implications of Code Maintenance in Practice.” IEEE Xplore.

“Challenges in Agile Software Maintenance for Local and Global Environments.”
MDPIL

Wong, C., Guo, X., Zhang, X., & Sun, J. (2019). DeepBug: A deep learning approach
for detecting performance bugs in Android apps. IEEE Transactions on Software
Engineering, 45(1), 87-102.

Fowler, M. (2018). Refactoring: Improving the design of existing code (2nd ed.).
Addison-Wesley.

2024. In Mukesh Saraswat & Rajani Kumari (eds.), Applied Intelligence and Comput-
ing, 209-222. Computing & Intelligent Systems, SCRS, India. https://doi.org/
10.56155/978-81-955020-9-7-21

Atman Ainapure, Aditya Kharote, Tarun Agrawal, Sudhir Dhage

[13] Mohapatra, S. K., Mohapatra, M., & Routray, S. (2021). A comprehensive survey on
code modernization: Approaches, tools, and challenges. ACM Computing Surveys
(CSUR), 54(1), 1-36.

[14] Van der Linden, P. J. (2018). Software documentation: A guide to good practice.
Addison-Wesley.

[15] E. A. AlOmar, H. AlRubayey, M. W. Mkaouer, A. Ouniz, and M. Kessentini, “Refac-
toring Practices in the Context of Modern Code Review: An Industrial Case Study
at Xerox,” arXiv preprint arXiv:2102.05201, 2021.

222

