
Analysis of LLM Code Synthesis in Software
Productivity
Anurag Anand, Shivali Chopra, Mohit Arora
School of Computer Science and Engineering Lovely Professional University Phagwara
Punjab, India
Corresponding author: Anurag Anand, Email: anuraganand7618@gmail.com

The use of LLMs in code generation tools has introduced a paradigm shift in software de-
velopment, streamlining the process and enhancing automation and efficiency. This study
presents a comprehensive analysis of the applications and effectiveness of the Large Lan-
guage Model (LLM) in code synthesis based upon the analysis of various models. The LLM
techniques where programming codes are significantly constrained on high level and low-
level programming paradigm, has emerged as a dominant strategy in software productivity
due to its inherent ability to promote efficiency and minimize time to build logic. Our re-
search systematically explores the impact of LLM on the performance outcomes on various
programming languages, comparing it to traditional code practices. We analyze multiple
case studies, quantitatively evaluating the success rates, efficiency, and problem-solving ca-
pacity of LLM-based solutions. Preliminary findings indicate that LLM encourages a unique
problem-solving approach, despite its limitations, often results in highly efficient and inno-
vative solutions. However, the technique also presents a steep learning curve that may deter
novice programmers. This study aims to contribute to the body of knowledge on software
productivity strategies and the continuing discourse on code efficiency and optimization.

Keywords: Code Generation, DevinAI, GPT-4, Code Llama, StarCoder, Tabnine, DS Code
Generation, LLM Security, LLEMMA.

2025. In Mukesh Saraswat & Rajani Kumari (eds.), Applied Intelligence and Comput-
ing, 247–259. Computing & Intelligent Systems, SCRS, India. DOI: https://doi.org/10.
56155/978-81-955020-9-7-24

1 Introduction

Language models (LMs) are computational models that assign probabilities to sequences of tokens [1],
commonly utilized in natural language processing tasks. Recently, there has been a growing interest in
applying LMs to model source code written in programming languages [2], [3], [4], [5], [6]. These code
language models have demonstrated exceptional performance in various tasks such as code completion
and generating code from natural language descriptions. The latest advancements in large language
models tailored for various tasks. Notably, one of the largest models in this domain, Codex [7] has been
integrated into the real-world development tool through GitHub Copilot [8], functioning as an in-IDE
developer assistant that autonomously generates code based on the developer's context.

In recent years, these models have proven their effectiveness across various software engineering tasks,
including test generation, documentation generation, and even synthesizing functional programs from
natural language descriptions. Emerging products like GitHub Copilot, Amazon CodeWhisperer, and
Tabnine, which leverage code generation models [9], are gaining popularity among developers. Despite
many models being trained on multiple programming languages, evaluations often focus solely on
Python. Python's widespread adoption among machine learning researchers has led to the creation of
several benchmarks and datasets, making it the primary language for evaluation. However, expanding
evaluations to include other languages is crucial to support a broader range of programmers [7]. In this
article, we aim to address this gap by presenting analysis of benchmark performed by renowned
organizations on various programming languages.

Code completion tools [10] and code generation[2], [3], [4], [10], [11] tools are pivotal for optimizing
developer efficiency and improving the quality of software development outputs. Code completion
tools, such as IntelliSense in Visual Studio Code (https://code.visualstudio.com/) or the built-in code
completion in JetBrains IDEs (https://www.jetbrains.com/), are designed to provide contextually
relevant suggestions of variables, fields, methods, types, and other code snippets. These tools, available
in most code editors, allow developers to minimize grammatical and logical errors, reduce keystrokes,
and explore new Application Programming Interfaces (APIs) without the need for mental context
switching to external documentation tools or API browsers.On the other hand, code generators
fundamentally differ from code completion tools. With the advent of advanced natural language
processing technologies. LLMs have emerged, offering a wide range of applications, particularly in code
generation. Code generators actively leverage LLMs, taking the programmer's input, processing it
through the specified models, and returning the output to the programmer's workspace. However,
unlike code completion tools, code generator’s outputs are not locally produced; But in first quarter of
2024 OpenDevin [12] has been released which also has integrated terminal, environment, as well as
online browser for reading the latest libraries available from its source. It [13] can generate more
extensive outputs, including lines or blocks of code capable of building function bodies or other
programming constructs.

The growing interest in AI-assisted code generators has led to the propagation of unverified
information about their capabilities and performance. This includes assessing the code generators on
multiple dimensions: Code Validity, Code Correctness, Code Security, Code Reliability, and Code
Maintainability [14] [15]. So our aims is to provide a comprehensive understanding of their usefulness
and potential pitfalls.

In this study, we undertake a systematic analysis of prevailing code models – Codex [7] , ChatGPT [16],
GPT-Neo[17], Code Llama [11] , and PaLM [18] etc across diverse programming languages, aiming to
elucidate the code modeling design decisions. These models are subject to rigorous comparative
analysis and evaluation against existing models employing the HumanEval [19] benchmark and an
unseen evaluation dataset across many programming languages.

This study addresses various use case in paradigm shifting of software productivity:

1 Impact of LLM on Code Completion Efficiency.
2 Analysis of Performance in LLM-Based Code Refactoring Tools

Anurag Anand, Shivali Chopra, Mohit Arora

248

3 Impact of LLM Integration on Software Development Automation
4 Cybersecurity Risks and Mitigation in LLM-Synthesized Code
5 Implications of LLM-Based Code Generation for Novice Programmers
6 Contribution of LLM Tools to Software Development Productivity
7 Future Directions and Challenges in LLM-Based Code Tools

2 Literature Survey

This section presents an outline of the diverse activities integral to software productivity that can be
facilitated by LLMs. Constructed from the context provided, these tasks encompass a broad range of
programming-related operations that leverage the capabilities of LLMs to optimize the process of
software development.

2.1 Code Completion

Lozhkov A et. al. presented BigCode [3] scientific project for responsible development of Code LLMs
and build StarCoder2 [20] with Software Heritage (https://www.softwareheritage.org/), consist of 619
programming language accompanied with high quality of data from Code Documentation, GitHub and
Kaggle Notebooks. One prominent contender, DeepSeekCoder-33B [21], has demonstrated remarkable
performance in high-resource programming languages. However, for low-resource languages,
StarCoder2-15B [3] has emerged as a formidable competitor, either matching or
surpassing DeepSeekCoder-33B [21] in code completion benchmarks. However, concerns regarding the
adequacy of hidden tests and ambiguity in problem descriptions have led to the introduction of the
EvalPlus [3] framework. This framework addresses these issues by significantly increasing the number
of tests in benchmarks like HumanEval+ [19] and MBPP+ [3]. Additionally, MultiPL-E [17], a multi-
language benchmark, provides a comprehensive evaluation platform by translating HumanEval
problems into various programming languages. Furthermore, the evaluation extends beyond
traditional code completion tasks to encompass data science tasks in Python, as demonstrated by the
DS-1000 [22] benchmark. StarCoder2- 3B, -7B, and -15B [3] models exhibit varying degrees of
proficiency in completing these tasks, with StarCoder2-15B [3] emerging as the top performer, even
surpassing larger models such as CodeLlama-13B and CodeLlama-34B [11].

Studies have emphasized the importance of accuracy metrics such as pass@k, which measure the
model's ability to produce correct code solutions within the top K number of predictions.(see Table 1)

Table 1. PASS@1result on MULTI-PLE [17], evaluated at temp – 0.2 and top-p – 0.95

Model C++ C# Go Java JS Perl Swift TS

StableCode-3B [23] 28.4 14.4 19.3 27.8 32 9.4 13.2 29.6

DeepSeekCoder-1.3B [18] 28.3 21.3 19.1 29.2 28.3 12.5 11 27.4

StarCoderBase-3B [3] 19.4 13.3 13.3 19.2 21.3 11.3 10 22.8

StarCoder2-3B[3] 27.2 20.5 23.6 27.4 35.4 13.6 25.1 34.4

CodeLlama-7B[11] 26.4 21 20.9 28.2 31.6 16.9 24.9 33.4

DeepSeekCoder-6.7B[18] 46.7 32.9 31 39.7 46.6 30.4 30.3 39.5

StarCoderBase-7B [4] 23.3 19.3 19.6 24.4 27.4 15.2 15.1 27.5

Applied Intelligence and Computing

249

2.2 Code Refactoring

Code refactoring involves restructuring class designs without altering external behavior. Techniques
includes extracting classes, renaming, encapsulating fields, polymorphism, interface extraction,
composition, breaking dependency cycles, and removing duplicate code. The goal is to enhance
maintainability, extensibility, and readability while preserving functionality [9].

Studies conducted for tools like Amazon CodeWhisperer [24], ChatGPT [6] and GitHub Copilot [8]
evaluated their performance based on various metrics such as correctness, validity, reliability, security,
and maintainability. The study aimed to assess the effectiveness of these tools in generating code
solutions and their adaptability to different input parameters. They [9] utilized the HumanEval [19]
problem dataset to evaluate the performance of each tool. (see Table 2)

Table 2.Comparative Analysis of tools based on their features and performance metrics.

Tool Correct
(%)

Partially
Correct (%)

Incorrect
(%)

Average Time for Refactoring
(minutes)

GitHub Copilot [9] 20-22 26-27 50-53 9.1
Amazon
CodeWhisperer [9]

18-20 25-26 54-56 5.6

ChatGPT [9] 61.6 25.6 12.8 8.9

Correct (%): Indicates the percentage of problems for which the tool generated correct code solutions.
Partially Correct (%): Represents the percentage of problems for which the tool produced partially
correct code solutions.
Incorrect (%): Shows the percentage of problems for which the tool generated incorrect code
solutions.
Average Time for Refactoring (minutes): Reflects the average time taken to eliminate code
smells or improve maintainability, measured in minutes.

Introducing dummy function names affected the success rate of code generation tools [2], [9], [10],
[11]. ChatGPT exhibited the highest percentage of correct solutions among the three tools. Providing
accurate and clear problem descriptions is crucial for improving the performance of code synthesis.
Code refactoring techniques such as extracting classes, renaming, encapsulating fields, and removing
duplicate code play a significant role in enhancing code maintainability, extensibility, and readability.
Amazon CodeWhisperer and GitHub Copilot demonstrate rapid improvements [9], indicating their
potential for various coding tasks in the future.

StarCoder2-7B[3] 33.6 20.7 20.2 29.4 35.4 16.6 26.1 36.3

CodeLlama-13B [11] 37.4 24.8 26.6 37.5 39.3 23.4 30.1 40.1

StarCoderBase-15B[4] 30.6 20.6 21.5 28.5 31.7 16.3 16.7 32.1

StarCoder2-15B[4] 41.4 29.2 26.2 33.9 44.2 37.2 34.2 43.8

CodeLlama-34B[11] 41.4 30.7 28.7 40.2 41.7 28.5 35.3 42.1

DeepSeekCoder-33B [18] 51.2 35.3 34.2 43.8 51.3 31 35.8 48.4

Anurag Anand, Shivali Chopra, Mohit Arora

250

2.3 Comment Generation / Documentation

Santa Coder [2], [3], [4], [10], [11] investigates the impact of various data filtering strategies on the
performance of BigCode [25], which is LLM trained for code generation tasks. One such filtering
strategy involves analyzing the comments-to-code ratio in Python, Java, and JavaScript files. The
approach utilizes modules like AST (Abstract Syntax Tree) and tokenize for Python files and Pygments
(https://pygments.org/) for Java and JavaScript files to extract comments and docstrings The analysis
reveals codebase contain no comments, approximately 20% for Python and Java files; and 45% for
JavaScript files. A minimum threshold of 1% is applied, removing an additional 3% of files in each
language [25]. Files with a comment-to-code ratio above 80% are considered to have poor quality and
are filtered out, resulting in the elimination of 2% of data across all language [25]. Performance metrics
(pass@1, pass@10, pass@100) for different language models under various data filtering is computed.
For instance, in Java, the Comments-to-code ratio filtering method improves Pass@1 from 0.1 to 0.11
compared to the same baseline models [25]. Similar improvements are observed in JavaScript and
Python models. They compares the performance of BigCode Santa [4] variants with 1.1B parameters
against the other model, noting that variants trained on more Python data tend to perform better.
Specifically, the stars variant, trained with 32% Python data, outperforms the tokenizer fertility variant,
which only includes 28.5% Python data.

2.4 Security in Code LLM

LLMs has significantly impacted various cognitive tasks, this progress has raised substantial concerns
regarding cybersecurity risks associated with the code synthesized by these models. In response, a
sophisticated cybersecurity safety measurement suite named CYBERSECEVAL [14] has been developed
to address two primary cybersecurity risks posed by LLMs and provide actionable insights for risk
mitigation.

The first major risk involves the potential for LLM-generated code to deviate from established security
best practices, thereby introducing vulnerabilities. Empirical evidence, such as GitHub's CoPilot and
Meta's CodeCompose [26] studies, indicates that a notable portion of code suggested by LLMs may
contain exploitable weaknesses. CYBERSECEVAL addresses this risk by seamlessly integrating into the
development and testing workflows of LLM designs [9] [14]. It leverages a robust Insecure Code
Detector (ICD) framework [14] comprising a knowledge base of static analysis rules. These rules,
designed to detect insecure coding practices as defined by the Common Weakness Enumeration (CWE)
standard, facilitate the identification and assessment of vulnerabilities in LLM-generated code across
various programming language, which includes the identification of 189 patterns related to 50 CWEs
across eight commonly used programming languages: C#, C++, Rust , JS, Python, Java, C and PHP. By
iteratively refining LLM models based on the insights garnered from CYBERSECEVAL [14], developers
can enhance the security posture of the code produced by their AI systems.

The second prominent risk pertains to the possibility of LLMs inadvertently facilitating malicious
activities related to computer systems [9], [14], [26]. Although foundational LLMs are generally
programmed to resist aiding in illicit activities, CYBERSECEVAL [14] investigates whether this
resistance extends to coding-enabled models when confronted with openly malicious requests. Through
meticulous evaluation of LLM responses to test cases crafted to simulate cyberattacks,
CYBERSECEVAL [14] offers invaluable insights into potential misuse scenarios. This enables LLM
designers to proactively identify and mitigate risks associated with the malevolent application of their
models.

CYBERSECEVAL's [14] comprehensive approach to cybersecurity safety measurement encompasses
two primary methodologies:

1 Insecure Code Detection: This component employs a sophisticated knowledge base of 189
static analysis rules aligned with the CWE’s standard. Leveraging these rules,

Applied Intelligence and Computing

251

CYBERSECEVAL [14] automatically generates test prompts by identifying instances of
insecure coding practices in real-world open-source codebases. Subsequently, it evaluates
LLM responses to determine adherence to or deviation from established security best
practices.

2 Compliance Evaluation with Cyberattacks: CYBERSECEVAL [14] crafts test cases by
manually authoring prompt fragments designed to solicit LLM assistance in executing
cyberattacks as per industry-standard frameworks like MITRE ATTACK. These test cases are
then used to evaluate LLM responses, assessing their compliance with requests involving
various cyberattack tactics, techniques, and procedures.

Assessing the cybersecurity safety of LLM completions through automated means poses considerable
challenges. static analysis methodology [14] attains a manually validated precision of 96% and recall of
79% in identifying instances of insecure code generation by LLMs. Moreover, approach used for
detecting malicious LLM completions for cyberattack assistance achieves a precision of 94% and a
recall of 84% [14].

2.5 Code Generation

Code generation, essentially the process of automatically generating code from various inputs, has
evolved significantly in recent years. It has moved from simple compiler construction to more complex
processes involving intelligence, mathematics, software-engineering, and advanced algorithms. This
section provides a detailed review of the most recent advancements in the field of code generation,
focusing on cutting-edge models such as GPT-4 [16], Codex [7], Lamma [11], StarCoder [3] etc. These
models represent the future of automated programming, leveraging the power to revolutionize the
software development process.

2.5.1 Code Generation

Study performed [25] evaluates the Python code-writing capabilities of eCodex [7], a GPT language
model fine-tuned on GitHub code. It compares eCodex's performance with GPT-3 and GPT-J using the
HumanEval evaluation set [6], [25], focusing on functional correctness in synthesizing programs from
docstrings. eCodex [7] outperforms both GPT-3 and GPT-J, solving 28.8% of the problems. The study
also explores the efficacy of repeated sampling, finding that with 100 samples per problem, eCodex [7]
solves 70.2% of problems. Limitations of eCodex include challenges with docstrings describing long
chains of operations and binding operations to variables. This research investigates the performance of
various language models in code generation tasks. They [3], [4], [10] analyze models such as PaLM
[18], PaLM-Coder [18], PaLM 2-S [18], StarCoder Base [3], StarCoder Python [3], and StarCoder [3],
focusing on their accuracy metrics at different prediction thresholds. (see Figure 1)

Collected performance data for various language models, including PaLM, PaLM-Coder, PaLM 2-S,
StarCoder Base [3], StarCoder Python [3], and StarCoder prompted [3] and many more from their
respective research studies. Performance metrics such as pass@1, pass@10, and pass@100 were
evaluated to assess the models' accuracy in code generation tasks.(see Figure 2)

Anurag Anand, Shivali Chopra, Mohit Arora

252

Figure 1. Pass@k evaluation on GPT-NEO, TABNINE, CODEX, T5+ [3] [2].

Figure 2. Pass@k evaluation on Llama with their varient models [11]

Applied Intelligence and Computing

253

Figure 3. Pass@k evaluation on CodeCushman, PaLM, StarCoder [3], [8], [10]

This analysis revealed notable variations in the performance of the evaluated language models. PaLM
[18] and its variants exhibited high accuracy at lower prediction thresholds, with pass@1 rates
exceeding 80%. However, the StarCoder [3] models demonstrated competitive performance at higher
prediction thresholds, achieving pass@100 rates above 40%. While the Code Llama Series model
achieves above 90% at threshold of pass@100. These results underscore the trade-offs between
precision and recall in code generation tasks. (see Figure 3)The study concludes by discussing broader
impacts of deploying advanced code generation technologies, including considerations of safety,
security, and economic implications. This research underscores the potential of eCodex [7] in
generating functional Python code from docstrings while highlighting areas for improvement and the
broader implications of such technology deployment.

2.5.2 Mathematical Code Generation

Mathematical problem-solving has long been a central focus of AI researcher. With the introduction of
LLMs, significant step forward in this domain designed for mathematical tasks. [10], [27] are trained
using a mixture of scientific studies, web data containing mathematics, and mathematical code.
LLEMMA [27] is specifically trained for mathematical task forming the Proof-Pile-2 dataset while
Gemini [10] is multimodal capable of performing versatile task. Through rigorous evaluation on
multiple mathematical benchmarks, including MATH, GSM8k, OCWCourses, MMLU-STEM, and SAT
[11] across a spectrum of mathematical reasoning tasks, LLEMMA [27] observe varying levels of
performance among different language models. The initial LLEMMA 2 - 7B [11] model shows modest
results, with percentages ranging from 3.2% on MATH to 29.9% on MMLU-STEM [4], [10]. The
proprietary Minerva 8B [28] model demonstrates higher proficiency, particularly notable on MMLU-
STEM [4], [10] with 35.6%. However, its performance is surpassed by the release of LLEMMA 7B [11],
which shows significant enhancements across all tasks, notably achieving 53.1% on SAT and 37.7% on
MMLU-STEM. As the model capacity increases to Code Llama 34B, further improvements are evident,
with notable gains on GSM8k, MMLU-STEM, and SAT tasks. Yet, it is with the introduction of
LLEMMA 34B [11] that the most substantial advancements are observed, with performance peaks of
71.9% on SAT and 51.5% on GSM8k. Comparatively, the Minerva [29] models with 62B and 540B

Anurag Anand, Shivali Chopra, Mohit Arora

254

parameters demonstrate competitive results, especially on tasks like MMLU-STEM [27] and MATH,
with scores reaching 53.9% and 33.6%, respectively. These findings underscore the incremental
improvements achieved through model scaling and refinement, culminating in LLEMMA's [11]
remarkable proficiency in mathematical problem-solving tasks. In contrast, Gemini Ultra [10] exhibits
strong performance on elementary exams and competition-grade problem sets, it achieves 94.4%
accuracy on the GSM8K benchmark [27] and outperforms competitors on middle- and high-school
math competitions as well as American Mathematical Competitions , solving 32% of the questions.

2.5.3 Data Science / ML Code Generation

DS-1000 [22] groundbreaking benchmark comprising data science problems encompassing seven
essential Python libraries: NumPy, Pandas, TensorFlow, PyTorch, SciPy, Scikit-learn, and Matplotlib
are meticulously curated from real-world scenarios sourced from StackOverflow, ensuring they reflect
diverse, practical, and realistic use cases. This diversity enriches the benchmark, providing a
comprehensive evaluation framework for code AI generation models. In evaluation, they assessed the
performance of various popular code generation models, including Codex, CodeGen, and InCoder,[7]
using DS-1000 [22]. The results revealed a performance range from 7.4% to 43.3%, with Codex-002 [7]
emerging as the most accurate model. This leaves ample room for improvement and underscores the
significance of DS-1000 as a benchmark for evaluating code generation on Data Science. This
assessment evaluates its effectiveness on –

 Problem Origin: Shows where problems come from.
 Surface Perturbation: Measures changes to problem presentation to prevent memorization.
 Semantic Perturbation: Assesses alterations to problem meaning for added complexity.
 Difficult Rewrite: Indicates modifications to make problems more challenging.
 Percentage of Surface-Form Constraints: Reflects constraints on solution appearance.
 Average Test Cases: Quantifies test cases used for solution verification.
 Average Problem Words: Shows average problem length.
 Average Lines of Code in Context: Reveals context length for problem-solving.
 Average Lines of Code in Solution: Displays average solution length.

2.5.4 API Integrated and Terminal Integrated Code Generation

DevinAI [12] emerges as a pioneering initiative, driven by the ambition to replicate an autonomous AI
software engineer renowned for its capacity to execute engineering tasks and actively engage in
software development collaborations. This project embarks on a journey to replicate, innovate, and
expand upon Devin's capabilities through the collective source of intelligence. At its core DevinAI [13]
has embedded with tools including shell, code editor, and web browser. Due to access to internet, it
automates though the stable version of library to empower the Software building process. These tools
when interacting with LMMs like GPT or Code Generation based LLMs, empower Devin to navigate the
complexities inherent in software development processes with remarkable efficiency. OpenDevin
[https://github.com/OpenDevin/OpenDevin] is another project which thrives on community
engagement, fostering an environment where developers, researchers, and enthusiasts converge to
explore the vast potential of LLMs in practical software engineering scenarios seeks to identify, dissect,
and address both the strengths and limitations of Devin's original model, thus paving the way for
significant advancements in the realm of AI-driven software development.

3 LLM Programming Dataset

Dataset serves as a cornerstone for various AI tasks like code generation, refactoring, comment
generation, code vulnerability analysis etc [30]. A comprehensive collection of annotated programming
samples is instrumental in facilitating rigorous model training and validation. This allows algorithms to

Applied Intelligence and Computing

255

effectively generate, refactor, and augment codebases, thereby fostering a surge in innovation and
automation within the realm of software development processes. Most of dataset are curated from
GitHub [https://github.com] is a prime repository, hosting a vast pool of open-source projects,
contributing to the wealth of programming languages and coding styles, Stack Overflow[
https://stackoverflow.com/] offers the advantage of pairing code snippets with natural language
descriptions, which is particularly beneficial for tasks related to code comment generation and
understanding code semantics., CodeSearchNet Corpus [https://github.com/github/CodeSearchNet/]
from GitHub, provides a rich dataset featuring millions of code snippets from diverse open-source
projects, Conala Corpus [https://conala-corpus.github.io/] provides pairs of natural language
questions with corresponding code snippets., Pile Dataset [https://pile.eleuther.ai/] employed for
training models like GPT-Neo, Google's BigQuery Public Datasets [https://cloud.google.com/
bigquery/public-data /github] and py150 [https://www.sri.inf.ethz.ch/ py150] for tasks related to
Python code generation and refactoring.

4 Analysis of Research Undertaken

Efficiency of LLM-Based Code Completion compared to Traditional Methods

Contextual Understanding: Traditional methods may lack the ability to understand the context in
which the code is written, which can limit their code completion capabilities. The LLM approach, on
the other hand, leverages the inherent capability of language models to understand long term
dependencies, thus potentially offering more relevant and context-aware code completions [2], [29],
[31].

Adaptability: Conventional code completion methods might struggle to adapt to new programming
paradigms or styles. However, an LLM approach can continuously learn from new data, making it
potentially more adaptable to evolving coding practices and trends[10], [12], [31].

Performance Metrics: To make a precise comparison, we would need to define clear performance
metrics. These could include the accuracy of code completions, the time taken to suggest completions,
the relevance of suggested completions, and the model's ability to handle complex code structures.
Such metrics are BLEU [32], ROUGE [33], METEOR [7], [34] and CODEBLEU[25] etc.

Analyzing principal determinants of performance in LLM-Based code refactoring tools and their impact
on code correctness, reliability, and maintainability

To examine this, we have considered tools like GitHub Copilot, Amazon CodeWhishperer and ChatGPT
several key factors:

Training Data Quality and Diversity: The performance of LLM-based tools is heavily reliant on
the quality and diversity of the code data they are trained on. The volumes of programming languages,
coding styles, and problem domains covered in the training data can significantly influence the tools
ability to generate correct and reliable code solutions[7], [9] .

Model Architecture and Complexity: The architecture of the underlying language model, like the
number of layers, the size of the hidden states, and the type of attention mechanisms used, can impact
the performance of the tool. More complex models may potentially grasp intricate code patterns better,
but they may also be more prone to overfitting and require more computational resources [17], [25].

Hyperparameter Tuning: The process of hyperparameter tuning can significantly impact the
performance of LLM-based tools. Optimal settings for parameters like learning rate, batch size,

Anurag Anand, Shivali Chopra, Mohit Arora

256

dropout rate, and others can greatly affect the learning efficiency and the quality of the generated code.
But tuning is too costly [21].

All these tools like GitHub Copilot, Amazon CodeWhisperer, and ChatGPT requires a systematic
evaluation approach; tool's ability to generate syntactically and semantically correct code. Automated
testing tools can be used to evaluate the correctness of the generated code. Consistency in generating
correct solutions across a variety of tasks and programming languages can be assessed by examining
the readability, modularity, and extensibility of the generated code. Tools that generate clean, well-
structured, and well-documented code would score high on maintainability.

Investigating LLMs in Automating Mathematical and Data Science/ML Code Generation
In the context of mathematical code generation, [22] these tools can be instrumental in automating
algorithm implementation, reducing the manual effort involved in translating mathematical concepts
into executable code. For example, LLMs can generate code for complex mathematical operations,
matrix computations, statistical models, or numerical methods given high-level descriptions or
mathematical notations. This can speed up the development process, minimize the risk of manual
coding errors, and enable developers to focus on higher-level design and problem-solving aspects. They
can also facilitate the use of best practices in machine learning code development, such as ensuring
reproducibility, proper data handling, and efficient resource utilization. By generating boilerplate code
and automating routine tasks, these tools can enhance productivity, improve code quality, and make
machine learning development more accessible to non-experts.

Cybersecurity Risks Associated with LLM’s Synthesized Code
The integration of LLMs into code generation and refactoring tools introduces novel cybersecurity
risks. While these models can generate syntactically correct code, they may inadvertently introduce
security vulnerabilities due to a lack of understanding of secure coding practices. For instance, they
might generate code with buffer overflows, insecure random number generation, or improper error
handling, which can be exploited by malicious actors. LLMs could be misused to generate malicious
code, such as malware or ransomware. The ability of these models to generate code based on high-level
prompts could be exploited to automate the creation of harmful software, posing a significant
cybersecurity risk. CYBERSECEVAL is designed to evaluate the security of synthesized code by
detecting insecure code practices [9], [14]. It can identify potential vulnerabilities and provide
recommendations for secure coding practices from which scenarios can be anticipated and mitigated by
implementing robust monitoring and control mechanisms.

Challenges and Learning Curve of Novice Programmers Using LLM
Code generation tools can have profound implications for novice programmers. Expose beginners to
various coding styles and paradigms, facilitating a broader understanding of programming.
Understanding and debugging the generated code could pose significant challenges if the code is not
adequately commented. while LLMs can generate syntactically correct code, they might not always
adhere to best coding practices. Novice programmers risk picking up bad habits if they uncritically
adopt the generated code [1], [3], [4], [14].

Trade-offs in terms of Efficiency, Innovation, and Learning Curve
LLM-based tools can aid in the learning and adoption of new programming languages or libraries, as
they can provide relevant code suggestions based on a vast repository of learned patterns. This can
potentially lead to faster development cycles, especially when dealing with unfamiliar coding
environments [10], [11], [12]. However, the use of LLM-based tools also comes with trade-offs. While
they can improve efficiency by automating code generation, they may at times produce complex or non-
intuitive code that could be difficult to understand or debug, especially for less experienced developers.
This could potentially increase the time spent on debugging and code comprehension, affecting overall
productivity.

Applied Intelligence and Computing

257

Future Directions and Challenges in the Development and Adoption of LLM-Code
Synthesis
To scale the adaptation of LLMs to more specialized domains such as embedded systems, high-
performance computing, or quantum computing. Expanding LLMs to cater to multi-modal inputs (e.g.,
combining natural language prompts with visual cues) is another potential growth area [10]. Adapting
LLMs to more specialized domains necessitate the collection and curation of high-quality, domain-
specific datasets. One of the main challenges is ensuring the security and reliability of the generated
code [22]. Another challenge is the potential over-reliance on these tools, leading to a superficial
understanding of programming principles among developers. To address this, it's important to develop
usage guidelines for these tools, emphasizing their role as an aid rather than a replacement for a deep
understanding of programming.

5 Conclusion

This study provides in-depth understanding of the complex domain of code generation. We delve into
the latest advancements and sophisticated models in the field, such as Gemini, Llamma, code
Cushman, PaLM, StarCoder, GPT-Neo, Codex, TabnineT5+. Also perform the analysis on various task
related to programming paradigm, explored the untouched analysis of generation of ML and DL codes
through LLM; analyzed various online datasets. Raises the concern in code generation vulnerability.
These models leverage large-scale pre-training on code repositories to learn the statistical patterns and
relationships within code. The utilization of these advanced models has shown promising results in
generating high-quality code with minimal human intervention. As technology continues to evolve, the
future of code generation holds immense potential for streamlining software development processes.

References

[1] C. Akiki et al., “BigScience: A Case Study in the Social Construction of a Multilingual Large Language
Model.” [Online]. Available: https://hf.co/bigscience/bloom

[2] Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi, “CodeT5+: Open Code Large Language
Models for Code Understanding and Generation,” May 2023, [Online]. Available:
http://arxiv.org/abs/2305.07922

[3] A. Lozhkov et al., “StarCoder 2 and The Stack v2: The Next Generation,” Feb. 2024, [Online]. Available:
http://arxiv.org/abs/2402.19173

[4] L. Ben Allal et al., “SantaCoder: don’t reach for the stars!,” Jan. 2023, [Online]. Available:
http://arxiv.org/abs/2301.03988

[5] Z. Feng et al., “CodeBERT: A Pre-Trained Model for Programming and Natural Languages,” Feb. 2020,
[Online]. Available: http://arxiv.org/abs/2002.08155

[6] J. Y. Khan and G. Uddin, “Automatic Code Documentation Generation Using GPT-3; Automatic Code
Documentation Generation Using GPT-3,” 2022, doi: 10.1145/3551349.

[7] S. Lu et al., “CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and
Generation,” Feb. 2021, [Online]. Available: http://arxiv.org/abs/2102.04664

[8] A. M. Dakhel et al., “GitHub Copilot AI pair programmer: Asset or Liability?,” Jun. 2022, [Online].
Available: http://arxiv.org/abs/2206.15331

[9] B. Yetiştiren, I. Özsoy, M. Ayerdem, and E. Tüzün, “Evaluating the Code Quality of AI-Assisted Code
Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT,” Apr.
2023, [Online]. Available: http://arxiv.org/abs/2304.10778

[10] Gemini Team et al., “Gemini: A Family of Highly Capable Multimodal Models,” Dec. 2023, [Online].
Available: http://arxiv.org/abs/2312.11805

[11] B. Rozière et al., “Code Llama: Open Foundation Models for Code,” Aug. 2023, [Online]. Available:
http://arxiv.org/abs/2308.12950

[12] W. Scott, “Devin, the first AI software engineer,” 2024.
[13] “https://www.cognition-labs.com/introducing-devin.”

Anurag Anand, Shivali Chopra, Mohit Arora

258

[14] M. Bhatt et al., “Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models,” Dec.
2023, [Online]. Available: http://arxiv.org/abs/2312.04724

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural Networks,” Sep. 2019, [Online]. Available:
http://arxiv.org/abs/1909.03496

[16] OpenAI, “GPT-4 Technical Report,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.08774
[17] F. Cassano et al., “MultiPL-E: A Scalable and Polyglot Approach to Benchmarking Neural Code Generation,”

IEEE Transactions on Software Engineering, vol. 49, no. 7, pp. 3675–3691, Jul. 2023, doi:
10.1109/TSE.2023.3267446.

[18] A. Chowdhery et al., “PaLM: Scaling Language Modeling with Pathways,” Apr. 2022, [Online]. Available:
http://arxiv.org/abs/2204.02311

[19] M. Chen et al., “Evaluating Large Language Models Trained on Code,” Jul. 2021, [Online]. Available:
http://arxiv.org/abs/2107.03374

[20] R. Li et al., “StarCoder: may the source be with you!,” May 2023, [Online]. Available:
http://arxiv.org/abs/2305.06161

[21] D. Guo et al., “DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code
Intelligence,” Jan. 2024, [Online]. Available: http://arxiv.org/abs/2401.14196

[22] Y. Lai et al., “DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation.” [Online].
Available: https://ds1000-code-gen.

[23] N. Pinnaparaju et al., “Stable Code Technical Report,” Apr. 2024, [Online]. Available:
http://arxiv.org/abs/2404.01226

[24] “AWS announces Amazon CodeWhisperer (Preview).”
[25] M. Chen et al., “Evaluating Large Language Models Trained on Code,” Jul. 2021, [Online]. Available:

http://arxiv.org/abs/2107.03374
[26] V. Murali et al., “AI-assisted Code Authoring at Scale: Fine-tuning, deploying, and mixed methods

evaluation,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.12050
[27] Z. Azerbayev et al., “LLEMMA: AN OPEN LANGUAGE MODEL FOR MATHEMATICS.” [Online]. Available:

https://github.com/EleutherAI/math-lm
[28] A. Lewkowycz et al., “Solving Quantitative Reasoning Problems with Language Models,” Jun. 2022,

[Online]. Available: http://arxiv.org/abs/2206.14858
[29] A. Lewkowycz et al., “Solving Quantitative Reasoning Problems with Language Models,” Jun. 2022,

[Online]. Available: http://arxiv.org/abs/2206.14858
[30] M. L. Siddiq, S. H. Majumder, M. R. Mim, S. Jajodia, and J. C. S. Santos, “An Empirical Study of Code

Smells in Transformer-based Code Generation Techniques,” Institute of Electrical and Electronics
Engineers (IEEE), Jan. 2023, pp. 71–82. doi: 10.1109/scam55253.2022.00014.

[31] T. Oh, S. Chung, B. Lunt, R. McMahon, and R. Rutherfoord, “The roles of IT education in IoT and data
analytics,” in SIGITE 2017 - Proceedings of the 18th Annual Conference on Information Technology
Education, Association for Computing Machinery, Inc, Sep. 2017, pp. 39–40. doi:
10.1145/XXXXXXX.XXXXXXX.

[32] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a Method for Automatic Evaluation of Machine
Translation.”

[33] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries.”
[34] A. Lavie and A. Agarwal, “Meteor: An Automatic Metric for MT Evaluation with High Levels of Correlation

with Human Judgments,” 2007.

Applied Intelligence and Computing

259

