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Recommender systems are pivotal in the modern digital landscape, where consumers are
inundated with choices, leading to decision fatigue. These systems offer personalized sug-
gestions, alleviating the burden of choice by tailoring recommendations to user preferences.
One of the challenges faced by recommender systems is dealing with sparse user-item ma-
trices, often resulting from limited user preferences. To overcome this, we adopt a novel
approach by categorizing users into three groups based on their rating activities: cold start
users, middle users, and heavy users. This categorization enables us to provide more accu-
rate and personalized recommendations. Furthermore, we utilize multi-criteria similarity
measures to identify user preferences. Unlike many existing recommender systems that fo-
cus on average or overall criteria, our approach considers individual user behaviors, leading
tomore precise recommendations. It is worth noting that while multi-criteria recommender
systems exist, they do not often group users together to enhance results. By categorizing
users, we can better understand their preferences and tailor recommendations accordingly.
To address sparse matrices, we employ hot deck imputation, filling in missing values by bor-
rowing information from similar records. This strategy ensures that our recommendations
are based on a more complete dataset, improving the overall accuracy and effectiveness of
our recommender system.
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1 Introduction

In today’s digital landscape, characterized by rapid technological advancements and
heightened consumer expectations, the shopping experience has evolved significantly.
Consumers now have access to a vast array of choices, both online and offline. However,
this abundance of options can often lead to decision fatigue, where consumers feel over-
whelmed by the sheer number of choices available to them. This can result in prolonged
comparison processes and, ultimately, a less satisfactory shopping experience.

Recommender systems play a crucial role in addressing these challenges by offering
personalized suggestions based on user preferences. These systems use algorithms to
analyze user behavior and past interactions to recommend items that are likely to be of
interest to them. By tailoring recommendations to individual preferences, recommender
systems help streamline the decision-making process for consumers, making it easier for
them to find products that meet their needs and preferences.

One of the key challenges faced by recommender systems is dealing with sparse user-
item matrices. Sparse matrices occur when many users have rated only a few items or
have provided ratings sporadically. This can make it difficult for recommender systems
to accurately predict user preferences and provide relevant recommendations [1][16].

To address this challenge, our approach involves categorizing users into three groups
based on their rating activities: cold start users, middle users, and heavy users. Cold start
users are those who have rated fewer than five items, middle users have rated between
five and 15 items, and heavy users have rated more than 15 items. This categorization
allows us to better understand user behavior and preferences, enabling us to provide
more accurate and personalized recommendations.

Furthermore, we utilize multi-criteria similarity measures to identify user preferences.
Unlike many existing recommender systems that focus on average or overall criteria, our
approach considers individual user behaviors, leading to more precise recommendations.
By incorporating these measures, we can better capture the nuances of user preferences
and provide more relevant suggestions.

It is worth noting that while multi-criteria recommender systems exist, they do not
often group users together to enhance results. By categorizing users, we can better un-
derstand their preferences and tailor recommendations accordingly.

To address sparse matrices, we employ hot deck imputation, filling in missing values
by borrowing information from similar records. This strategy ensures that our recom-
mendations are based on a more complete dataset, improving the overall accuracy and
effectiveness of our recommender system.

In conclusion, our approach aims to enhance the effectiveness of recommender sys-
tems by addressing common challenges such as sparse matrices and limited user pref-
erences. By categorizing users, employing multi-criteria similarity measures, and using
hot deck imputation, we can provide more accurate and personalized recommendations,
ultimately improving the user experience.
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2 Literature Review

Recommender systems play a crucial role in modern digital platforms, assisting users in
navigating the overwhelming abundance of choices available to them. These systems are
often classified into two main categories: collaborative filtering and content-based rec-
ommender systems [2]. Collaborative filtering systems identify groups of users with sim-
ilar preferences and recommend items based on the preferences of these groups, while
content-based recommender systems recommend items similar to those previously liked
by the user [3][15].

Collaborative filtering encompasses various techniques, including memory-based and
model-based approaches. Memory-based approaches calculate similarity among users
using metrics such as cosine similarity or Pearson correlation. Model-based approaches
utilize machine learning algorithms, such as PCA, SVD, or matrix factorization, to track
users’ ratings and predict their ratings for unrated items [4].

One important aspect of collaborative filtering is neighborhoodmodels [10][11], where
the system uses the behavior of similar users to make recommendations. These models
rely on identifying a subset of users who are similar to the active user and combining
their ratings to provide personalized recommendations [5]. These approaches can be
classified into user-based or item-based recommendation, depending on whether they
focus on similarities between users or items [6].

Hot deck imputation is a technique commonly used to handle missing data in datasets,
including those used in recommender systems. Thismethod replacesmissing valueswith
observed values from similar cases, ensuring that the imputed values are consistent with
the underlying patterns in the data. Hot deck imputation is advantageous because it
preserves the structure of the original dataset and does not rely on complex modeling,
making it less sensitive to model assumptions [7][12].

Recent research in recommender systems has focused on enhancing the effectiveness
of multi-criteria recommendation systems. These systems integrate user preferences
across multiple dimensions, providing more detailed information about user preferences
and items. Multi-criteria recommendation systems have shown promising results in im-
proving predictive accuracy and adapting to various real-world scenarios [8][13].

3 Problem Description

Multi-criteria rating systems have garnered significant attention due to their ability to
more accurately capture user preferences across various dimensions. However, existing
research predominantly treats all users as part of the same homogeneous group, fail-
ing to account for the diverse needs and behaviors of users at different activity levels,
such as cold-start, middle, and heavy users. Moreover, the challenge of determining the
most suitable measure for each user group and selecting appropriate imputation meth-
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ods to address similarity calculation further complicates the effectiveness of existing
approaches.

In response to this issue, a more nuanced approach is proposed, wherein users are cat-
egorized into distinct groups based on their activity levels. This segmentation enables
the application of tailoredmethodologies for each user group, thereby enhancing the sys-
tem’s performance, particularly for new or cold-start users. Techniques such as Pearson
correlation and multi-dimensional distance metrics are commonly employed to assess
similarity among users within multi-criteria rating systems.

4 Proposed Algorithm

In our proposedmulti-criteria recommender system, we start by dividing users into three
groups based on their overall number of movie ratings: cold-start users, middle-level
users, and heavy users. Cold-start users are those with fewer than 5 ratings, middle-
level users have rated between 5 and 15 movies, and heavy users have rated more than
15 movies. This categorization helps us understand and cater to the varying levels of user
activity and experience within the system.

One of the challenges in recommender systems is dealing with missing ratings, which
can lead to sparse matrices and affect the accuracy of recommendations. To address this,
we employ KNN hot deck imputation. This technique uses the ratings of similar users
(neighbors) to predict missing ratings for active users. By considering the ratings of
similar users, we can better estimate the preferences of users with missing ratings.

Additionally, we calculate the similarity among users for each criterion. For example,
if we consider movie genres as criteria, we calculate the similarity between users based
on their ratings for movies in each genre. This process is repeated for all criteria, and the
individual similarities are then aggregated to form an overall similarity between users.
This aggregated similarity helps us predict overall ratings for active users, taking into
account their preferences across different criteria.

Finally, we evaluate the performance of our recommender system using precision met-
ric. These metrics help us assess how well our system is able to recommend movies to
users based on their preferences. By analyzing the performance of different similarity
measures for each user group, we can determine the most effective approach for improv-
ing the accuracy of our recommendations.

5 Experiment

5.1 Dataset Description

The dataset used in this study consists of user reviews for hotels, with the following
attributes: ’review_id’, ’member_id’, ’hotel_id’, ’rating’, ’recommend_list’, and ’review_-
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text’. The ’recommend_list’ contains multiple criteria ratings (e.g., Value, Location, Sleep
Quality, Rooms, Cleanliness, Service). Dataset description is as follows:

• Total users: 3453

• Total hotels: 1832

• Total reviews: 21826

• Maximum hotels rated by one user: 24

• Minimum hotels rated by one user: 1

• Average hotels rated by one user: 5.91

• Columns: [’review_id’, ’member_id’, ’hotel_id’, ’rating’, ’recommend_list’, ’review_-
text’]

where the column ‘recommend_list’ is string having following attributes:

Value;5:Location;5:SleepQuality;5:Rooms;5:Cleanliness;4:Service;5:Checkin;3:Business
Service

5.2 Preprocessing on the dataset

Following preprocessing steps are done on the dataset:

1. Dropping the unnecessary rows, having different values in the ‘recommend_list’.

• We have in our dataset an overall rating and 6 classes (Value, Location, Sleep
Quality, Rooms, Cleanliness, Service) for rating the hotel in recommend_list
column.

• Few users have rated the hotels on the basis of ‘business’ and ‘check’ which
will lead to inconsistencies proceeding further in our algorithm.

• Such users have been dropped from the dataset

2. Dropping duplicate rows

• Users who have rated the same hotel more than once are dropped.

• In other words, we only retain unique user- hotel pairs.

• Rating of user for the hotel done at the first time is retained.

3. Dropping irrelevant columns from our dataset

• Columns ‘review_id’ and ‘review_text’ are not useful for further calculations
and are thus dropped.
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4. Renaming columns

• We rename the ‘rating’ column as ‘overall’

5. Appending rating criteria as separate columns to the original dataset

• ‘recommend_list’ contains the rating criteria → ‘value’, ‘location’, ‘sleep_-
quality’, ‘rooms’, ‘cleanliness’, ‘service’

• We split these string values into separate columns and append it to columns
‘member_id’, ‘hotel_id’ and ‘overall’ columns

5.3 Data Split into different groups based on number of user ratings

We are splitting our data into 3 groups based on the number of ratings done by a user.
This splitting is done using a function which calculates the number of ratings of each
user and classifies them accordingly.

The data configuration after splitting is as follows:

Table 1: Data statistics after cold start, middle, heavy users division

User Activity
Cold start users Middle users Heavy users

Total users 1909 1446 15
Total hotels 1635 1346 238
Total reviews 4455 11640 259

5.4 Train Test Split

In our approach, we use a 90-10 train-test split ratio, where 90% of the data is used for
training and 10% for testing. To ensure the accuracy of our predictions, we remove hotels
and users from the test set that are not present in the training set. This is because it is
difficult to predict ratings for hotels that have not been previously rated by any user.

We implement this removal process using a function that checks each entry in the
test set. If the entry is not found in the training set, it is removed from further consider-
ation. This ensures that our model is evaluated only on data that it has been trained on,
improving the reliability of our predictions.

Consecutively the cold start users, middle users and the heavy users are spilt into train
and test sets.

Following are the statistics of this split.

6 Implementation Method

First, we construct a user-item matrix for each criteria , where each row represents a
user and each column represents a movie. The values in this matrix correspond to the
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Table 2: Data statistics after cold start, middle, heavy users division

Split values
Cold start users Middle users Heavy users

Train set users 1425 1909 15
Test set users 379 874 13

Train set hotels 1297 1602 217
Test set hotels 351 694 26

Train set reviews 4009 10476 233
Test set reviews 421 1164 26

Figure 1: Illustrative representation of dataset splitting

overall rating given by each user to each movie.
After constructing the user-item matrix, we apply hot deck imputation using the K-

nearest neighbors (KNN) imputer to handle missing values. Since the matrix can be very
sparse, imputation helps to fill in missing values and improve the accuracy of our results.
We use a KNN imputer with a parameter setting of K=3, meaning that for each missing
value, we consider the three nearest neighbors with known ratings for that item and
average their ratings to impute the missing value. This approach helps to maintain the
integrity of the matrix and ensure that our imputed values are based on similar users’
ratings.
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6.1 Similarity calculation

6.1.1 Multi-dimensional Distance Metrics

We can calculate similarity using multidimensional Distance Metrics.
In our methodology, we aim to quantify the similarity between users based on their

ratings for items across multiple criteria.
Each user’s rating for an item is represented as a vector R(u, i) = {𝑟0, 𝑟1, 𝑟2, ..., 𝑟𝑘} where
𝑘 denotes the number of criteria considered. first we will calculate distance between
two users for their common rated item on all criteria 𝑑𝑟𝑎𝑡𝑖𝑛𝑔(𝑅(𝑢1, 𝑖), 𝑅(𝑢2, 𝑖) The multi-
dimensional distance( Euclidean [9], Manhattan, Chebyshev) can be used to calculate
the distance and overall distance can be calculated using equation 30.1

𝑑(𝑢1, 𝑢2) = ( 1
|𝐼 (𝑢1, 𝑢2)|

) ( ∑
𝑖∈𝐼 (𝑢1,𝑢2)

𝑑𝑟𝑎𝑡𝑖𝑛𝑔(𝑅(𝑢1, 𝑖), 𝑅(𝑢2, 𝑖)) (30.1)

where 𝑖 ∈ 𝐼 (𝑢1, 𝑢2) is list of items both 𝑢1 and 𝑢2 have rated
Distances and similarity are inversely proportional to each other.
Hence the distance between all the users is computed (𝑑(𝑢1, 𝑢2)) so and then the simi-

larity between them is calculated using the following equation 30.2:

𝑠𝑖𝑚(𝑢1, 𝑢2) = 1
1 + 𝑑(𝑢1, 𝑢2)

(30.2)

The constant ‘1’ is added in the denominator for numerical stability (to avoid divide
by zero error).

6.1.2 Pearson / Cosine similarity

In addition to the multidimensional similarity approach, we also use Pearson similarity
and cosine similarity to compute the similarity between users’ ratings.

We first calculate the similarity between each pair of users for each criterion to form
a similarity matrix for each criterion. Then, we aggregate all the similarity matrices to
find the overall or average similarity between users.

This average similarity is computed separately for all three groups: cold-start, middle,
and heavy users. This approach allows us to consider different user groups and their
rating patterns when determining the similarity between users.

6.2 Rating Prediction

To predict the rating that user 𝑢 would assign to item 𝑖, we initiate by identifying all users
(𝑁𝑢) similar to user 𝑢 from the average similarity matrix. However, our consideration is
limited to users who have previously rated item 𝑖.
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Subsequently, we compute a weighted average of the similarity between user 𝑢 and
these similar users, each weighted by the rating the similar user assigned to item 𝑖. This
weighted average serves as our predicted rating.

In cases where there are no similar users to user 𝑢 for item 𝑖, we resort to returning the
mean rating as the prediction. This strategy ensures a fallback mechanism for situations
where direct similarities are insufficient for prediction. Mathematically it is discussed via
equation 30.3

̂𝑟𝑢,𝑖 =
∑
𝑎∈𝑁𝑢

𝑟𝑎,𝑖 𝑋 𝑠𝑖𝑚(𝑎, 𝑢)

∑
𝑎∈𝑁𝑢

𝑠𝑖𝑚(𝑎, 𝑢) (30.3)

Where 𝑛𝑢 is the list of neighbours who have rated item i.

Figure 2: Process of rating prediction

7 Evaluation

For all user-item pairs in the test set, we predict the ratings using the method described
earlier. These predicted ratings are then compared with the actual ratings in the test set
to calculate the Root Mean Squared Error (RMSE). RMSE is a measure of the differences
between predicted and actual values, providing a way to assess the accuracy of our rec-
ommendation algorithm. A lower RMSE indicates better performance, as it signifies that
our predictions are closer to the actual ratings.

8 Results

In this section, we provide a detailed comparison of the performance of our proposed
model with and without the hot deck imputation technique. The performance of the
recommender system is evaluated using the Root Mean Squared Error (RMSE) metric,
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which measures the differences between predicted and actual ratings. A lower RMSE
indicates better performance.

Performance Analysis:
To assess the effectiveness of our proposed model, we compared the RMSE values for
different user groups (cold-start, middle users, heavy users) using various similarity mea-
sures (Manhattan, Chebyshev, Euclidean, Pearson, Cosine). When hot deck imputation
is applied, we compare the results with the previous implementation technique (without
any amendments). This comparison allows us to assess the impact of hot deck imputation
on the performance of our recommendation algorithm.

Table 3: Tabulated previous and updated results

Previous results Updated results
Cold start Middle users Heavy users Cold start Middle users Heavy users

Manhattan 1.2537 1.0523 1.18695 1.0174 0.8966 1.1766
Chebyshev 1.2570 1.0510 1.18699 1.0187 0.8964 1.1766
Euclidean 1.2560 1.0512 1.18696 1.0180 0.8961 1.1766
Pearson 1.3400 1.0698 1.18717 1.0231 0.8986 1.1766

Average rating 1.4099 1.3206 1.2373 1.3926 1.3009 1.3008
Cosine - - - 1.0232 0.8986 1.1766

The performance of our proposed model demonstrates significant improvements in
prediction accuracy, as evidenced by the reduction in RMSE values across all user groups
and similarity measures. The inclusion of hot deck imputation has been particularly ben-
eficial, leading to a substantial decrease in RMSE for cold-start and middle users, which
are traditionally challenging segments for recommender systems. This improvement un-
derscores the effectiveness of our methodology in providing accurate and personalized
recommendations, especially for users with sparse rating histories. The model’s robust
performance across different similarity measures further validates the versatility and
reliability of our approach in handling various data scenarios.

9 Conclusions

Our observations suggest that combining hot deck imputation with multi-criteria simi-
larity matrices and dividing users based on the number of ratings they have done leads
to better results. This approach improves the accuracy and effectiveness of the recom-
mendation algorithm compared to using a single criterion or no imputation methods or
any other imputation methods. From our analysis, we have found that different simi-
larity measures perform differently across user groups. Specifically, Pearson similarity
yields the best results for cold start users, while Euclidean similarity is most effective
for middle users. Interestingly, for heavy users, the choice of similarity measure appears
to have less impact, as most similarity measures produce similar results. The accuracy
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for heavy users is slightly lower than anticipated, which can be attributed to the limited
number of data points available in our dataset. This limitation affects the algorithm’s
ability to be effectively trained and tested, resulting in slightly lower accuracy for heavy
users.
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